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Differential Absorption based Imaging
Basics Working Principle

Problem: Determine the 3D spatial concentration profile of a
known trace gas using differential absorption Lidar.

Pulsed laser used as light
source

Measure (back-)scattered
light binned based on
time-of-flight

3D imaging requires scan of
a cone. (→ Lidar cube)
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Figure 2. DIAL system diagram. 
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Figure 3. (a) Schematic showing how the emission rate is calculated combining DIAL concentration
and wind vector measurements; (b) example of the fixed meteorological mast used to measure wind 
conditions at different heights.
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Figure 3. (a) Schematic showing how the emission rate is calculated combining DIAL concentration
and wind vector measurements; (b) example of the fixed meteorological mast used to measure wind
conditions at different heights.

Mobile 2D Lidar scanning a plume cross
section1

1Illustration taken from Innocenti, F and Robinson, R and Gardiner, T and Finlayson, A and

Connor, A. Differential Absorption Lidar (DIAL) measurements of landfill methane emissions, Remote

Sensing, 2017.



Differential Absorption based Imaging
Assumptions and Problems

Gas of interest must be known a priori!

Source is tuned to emit pulses at two wavelengths λon and λoff
which are chosen such that:

λon is absorbed by the target gas more than λoff

Their scattering behaviour can be assumed identical

Additional atmospheric data is sometimes necessary or useful.

Simple approach: Trivial inverse problem but requires good
signal quality which typically makes it impractical for 3D
reconstruction

Goal: Make better use of measurable data and prior
knowledge.



The first ingredient
Low-dimensional Dispersion: Description

We consider the advection-diffusion equation given by

∂

∂t
u +∇ · (ηu)− Q +

1
2
∇ · (κ∇u) = 0 (1)

with Q = ρQ · δ(x⃗ − q⃗)δ(t) is an instantaneous source term at
q⃗ while η, κ model drift and diffusion respectively and shall be
functions of time only.

The plume can be modelled as a superposition of puffs ϕ

N∑

j=1

wjϕ

(∥x −mj∥2

hj

)
(2)

for wj , hj and mj which depend on the dispersion quantities
and regularise the inverse problem by imposing PDE
based constraints.



The first ingredient
Animated turbulent plume



The first ingredient
Approximation error in the dispersion process

When it comes to the actual image the reconstruction is essentially
just a low-resolution (blurry) version of the true image that
preserves certain features

There is some empirical/experimental justification for the
approximation.
The true generating process is not tractable.

Low- vs. High-res difference ≈ 0.5 relative L1 error in image



The first ingredient
Some notes on the approximation

The parameters ultimately used in order to approximate the
plume can be thought of as width and position for each
down-wind cross section.
The reconstructed distributions will approximately match in
these features (and capture those well) but have significantly
higher entropy and mismatched higher moments.
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Cross sections of the gas distribution at x=35m. Note that the oval shape is due to the upwards drift of
the gas.



The second ingredient
Radiative Transfer: Off-beam Signals

λon/off

direction v⃗

ϕ

θ

instrument orientation v⃗

instrument position xD

narrow FOV detection
single scattering at −v⃗

wide FOV detection

multiple scattering response
at a range of impact angles

Figure 1: Laser pulses of two different wavelengths, λon/off (red), are released at the source, located at xD, in direction v⃗. A detector, also located at xD,
with a narrow narrow FOV (black) captures the single scattering response incident at −v⃗ whereas a wide FOV captures light from a range of directions which
have scattered multiple times. After a measurement in direction v⃗ has been taken the instrument is re-oriented by adjusting θ or ϕ (blue). This procedure is
carried out for azimuthal angle and polar angles at a fixed instrument location xD.

1

Laser pulses of two different wavelengths, λon/off (red), are released at the source,
located at xD , in direction v⃗ . A detector, also located at xD , with a narrow narrow
FOV (black) captures the single scattering response incident at −v⃗ whereas a wide
FOV captures light from a range of directions which have scattered multiple times.
After a measurement in direction v⃗ has been taken the instrument is re-oriented by
adjusting θ or ϕ (blue). This procedure is carried out for azimuthal angle and polar
angles at a fixed instrument location xD .



The second ingredient
Radiative Transfer: The scattering dilemma

Optical remote sensing mostly relies on scattering
For “hard“ scattered light (from surfaces) the trajectory is
uniquely determined by the outgoing angle and time of
flight.
The same is true for single-scattered light (in narrow
FOVs) when the scattering is caused by airborne particles.

Gases can be measured by absorption at certain wavelengths
We can use Beer-Lambert law when the light’s trajectory
is known.
Using a narrow FOV means we make very little error in the
light paths at the cost of excluding possibly useful data.

Challenge

Make the other photons useful despite not knowing exact paths!



The second ingredient
Radiative Transfer: The forward model

The dynamics of light in heterogeneous scattering media can be
modelled via the Radiative Transfer Equation (RTE)

(
∂

∂t
+ v · ∇x + σ

on/off
a + σs

)
Hon/off = σs

∫

S2
Hon/off fpdv ′

where σs , σ
on/off
a are heterogeneous scattering/absorption

parameters and fp is a phase function.

The source term is δ(v − vj)δ(t) and differs for each direction
vj within the scanned cone.
The measurement is taken at a single point on the boundary
separately for each vj .



The second ingredient
Neumann Series: Extension of the Lidar-Equation

The solution of the RTE can (often) be written as the sum of
contributions from all orders of scattering

H = H1︸︷︷︸
single scattering (narrow FOV)

=standard Lidar

+
∑∞

j=2 Hj︸ ︷︷ ︸
multiple scattering (wide FOV)

When multiple scattering is considered there is no more closed
form solution for the inverse problem.

When the FOVs can be separated we gain access to H1 and∑∞
j=2 Hj individually.



The second ingredient
Radiative Transfer: The forward model

RTE is well understood but the inverse problem is typically
studied for “more complete“ measurements.

σa and σs control the rate of absorption and scattering.

fp is a probability density that determines the direction
after scattering events.

There are many ways to “solve“ the RTE

Simplifying approximations for some regimes such as
diffusion, single-scattering, etc.

Accurate solutions are typically expensive

The RTE and dispersion should interact as seamlessly as
possible (different “natural grids“).



The second ingredient
Approximation error for Radiative Transfer

Observation - where it really might go wrong!

The parameters of the RTE cannot be fully reconstructed
but are necessary to evaluate the (forward-) model and
compute the image.

We must develop a theory regarding the information contained
within the measured data.

The central idea is to exchange temporal with spatial
averaging.

Use evaluations of the optical transport model that can be
thought of as a high entropy approximation relative to a
reference distribution.



Parameter Uniqueness under RTE Assumption
Single vs. Multiple Scattering

For functions such as (2) we can exploit the existence of a “first
impact point“ and use that single scattering is more singular and
can be measured earlier than higher order scattering to show:

Theorem (first attempt uniqueness - informal)

Assuming the optical forward model is governed by the RTE, then
the differential absorption field σon

a − σoff
a and σs both akin to the

form (2) are uniquely determined by the on and off intensities
regardless of the FOV, provided the other parameters are given.

In other words, given a subset of RTE parameters, there is a
difference between wide and narrow FOVs iff we consider noisy data:

Discrepancies between the average model used in the inverse
problem and the true concentration profile
Optical noise due to limited photon counts in each bin



Computational Trade-off
A semi-parametric approach

Using a large number of kernels as in (2) we can account for
(turbulence induced) variation in the plume at the cost of a
high-dimensional inverse problem.

With a small number of kernels RTE solutions become cheaper
but the resulting model error/discrepancy can become large
quickly.

Trade-off: Use a semi-parametric model
High-dimensional parameterisation for intensity Hoff

Low-dimensional form through dispersion parameters for
absorption Hon

Hoff

This is technically a relaxation!

Previous uniqueness result no longer valid in that generality.



Parameter Uniqueness under Relaxed Assumptions
A semi-parametric approach

Having made a relaxation to the RTE we must settle with a
uniqueness result that makes further assumptions on the nature of
the scattering and absorption functions.

Theorem (relaxed uniqueness - informal)

Assume that fp is known while σoff
a , σs and ∆a := σon

a − σoff
a are as

in (2). If further σoff
a , σs and ∆a have common mid-points as well

as widths, their base kernels satisfy a certain regularity condition
and kernel weights are equal up to proportionality (with a constant
shared between all summands), then the absorption Hon

Hoff uniquely
determines σa, σs and ∆a.

Differential absorption sufficient to identify correct parameters
if the scattering is “well aligned“.
The role of the optical scattering parameters is different.



Detection of low concentrations
A toy problem with wider implications

In general we assume a Poisson noise model for the optical
data mti ,vj ,nti ,vj binned at mid-points ti and directions vj

For low differential absorption and known plume shape the
distribution of log

( nti ,vj

mti ,vj

)
can be approximated by a Gaussian

and (regardless of the FOV) used to test the Hypothesis

H0 : No gas present vs. H1 : Absorbing gas present

when the “shape“ of the gas is known
For narrow FOVs tests constructed this way are essentially
optimal whereas for wider FOVs their quality depends on the
alignment of the true and estimated scattering behaviour



Detection of low concentrations
Worst case analysis under various conditions

Detection in the case of a single kernel for varying distributions
of scattering particles and phase functions2

Plots show worst case behaviour relative to the (known)
equivalent narrow FOV quantity subject to different constraints

(a) unconstrained (b) known phase function (c) full knowledge

Figure (a): If nothing about the distribution of ambient particles is known then wide
FOVs will improve the reconstruction only for optically thick plumes. Figure (b) and
(c) show the degree of improvement from approximate knowledge and full of the
scattering parameters.

2Henyey-Greenstein with range g=0 to g=0.7



Detection of low concentrations
Worst case analysis under various conditions

Knowing that ambient scattering is limited, i.e. the feature of
interest is well aligned with the scattering particles, is virtually
equivalent to full knowledge

(a) limited ambient scattering (b) full knowledge

Figure (a) and (b) show very similar results indicating that full knowledge of the
scattering parameters does not yield considerably better results than a mere limit on
ambient scattering.



Detection of low concentrations
Ambient scattering effects

Light along paths that do not reach the region of interest bear
no information about the parameter of interest
Large amounts of ambient scattering render photons detected
by the wide FOV a nuisance and reduce the sensitivity of the
measurement

7
(a) ambient scattering

top/left in previous graphic
6

(b) plume scattering
bottom/right in previous graphic

Figure (a) and (b) show why the absorption in the wide FOV is heavily dependent on
ambient scattering. Only blue trajectories are sensitive to the patch of interest. Dark
blue patches are strongly affected whereas photons along grey paths behave like noise.



Detection of low concentrations
Generalisations from the toy problem

The attempt at sensing a small feature enclosed within a larger
plume will suffer from essentially the same effects as caused by
ambient particles

3
(a) small feature

2
(b) large feature

Figure (a) and (b) show why the absorption in the wide FOV is heavily dependent on
feature size. Only blue trajectories are sensitive to the patch of interest. Dark blue
patches are strongly affected whereas photons along grey paths behave like noise.



Detection of low concentrations
Narrow FOVs

Light collected by a narrow FOV will follow a fixed trajectory
and pass through the section of interest as long as it is aimed
in the right direction

5
(a) small feature

4
(b) large feature

Figure (a) and (b) show why the absorption in the narrow FOV is less dependent on
feature size.



Qualitative conclusions and focus of simulation
Where can we expect a benefit and how much better can it get?

Main limitation: We cannot improve imaging resolution!

Lack of information about the scattering parameters.

Even if σa and σs were known the “smoothing“ of
multiple scattering makes the data much less useful.

RTE solutions become insufficiently accurate and
computationally problematic.

Due to non-linearity there will be some bias in the estimator
but the main contribution from the unknown RTE parameters
is to be expected in low order scattering.

Our main contribution is making sense of low-order scattering
(e.g. up to 4-5 events), i.e. the “difficult“ case in-between a
diffusion approximation and single-scattering.



Solving the Coupled Inverse Problem
Likelihood and optical noise model

The likelihood can be expressed as

L(θ | m,n) =
∑

i ,j

Hon
ti ,vj

+ Hoff
ti ,vj

− mti ,vj log(H
on
ti ,vj

)− nti ,vj log(H
off
ti ,vj

)

where θ = (ψ,Hoff) and Hon = HoffEp∼Qψ [αψ(p)]

The parameters α,Q are suitably defined functions
parameterised by low-dimensional dispersion related
parameters ψ.

Closed form solutions for Hoff alongside low-dimensionality of
profile likelihood lead to tractable reconstruction method.



Solving the Coupled Inverse Problem
Parameter Fitting

Maximum of L(· | m,n) w.r.t. Hoff is at Hoff
ψ =

mvj ,ti
+nvj ,ti

1+Ep∼Qψ
[αψ(p)]

so

we can find ψ by iterating

ψr+1 = ψr + I(ψr )
−1∂ψL(αψr ,Qψr ,H

off
ψr

| m,n)

and I(ψ) approximates the Hessian and is of the form

I(ψ) =
∑

i ,j

(mvj ,ti + nvj ,ti )
∂ψPi ,j(ψ)∂ψPi ,j(ψ)

T

Pi ,j(ψ)(1 − Pi ,j(ψ))

Only first derivatives! Limits number of RTE evaluations.

In practice we will typically also have a prior for ψ which
doesn’t change the structure or complexity.



Solving the Coupled Inverse Problem
Interpreting scattering parameters

Intuitive control over the likely photon trajectories

Hoff acts as a back-scattering coefficient

σoff
a (ψ), σs(ψ) control the forward propagation via Q(ψ)

10
(a) diffuse paths (high σs ) 11

(b) spiky paths (low σs )

Increasing the scattering rate σs results in more diffuse paths, thick lines in figure (a),
while a reduction puts weight on more straight paths as shown in figure (b). In the
semi-parametric model the magnitude of the signal is not affected.



Simulations
Reconstruction of Smooth Image and Parameters of Interest

Simulated reconstruction from 30 × 10 × 50 Lidar scan of 14
parameter dispersion which can be recovered when
conventional reconstruction fails due to the low SNR.
Scattering caused largely by particles around the gas plume
and effective resolution ≈ granularity of absorbing gas within
scatterer!
Different phase function fp used for simulation and
reconstruction to emulate the complexity of real conditions!
Fixed system parameters used are (approximately):

Detector: 3cm lens with 4% detection rate
Methane amount: 50mol or 0.8kg
Distance: 100m
Wavelength (absorbing): 1645.55nm
Ambient intensity: 0.025W uniformly over hemisphere,
much less than peak signal but not entirely negligible.



Simulations
Reconstruction of Smooth Image and Parameters of Interest

Low concentration means that the noise is large relative to the
logarithmic differential absorption
If the measurement isn’t increasing regularisation is needed to
avoid negative concentration values
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Figure (measured narrow FOV data in the region of interest): The level of noise in the measurement
results in data that isn’t monotone for the observed concentration levels. The proposed parameterisation
through dispersion related quantities is one way of dealing with this issue.



Simulations
Reconstruction from 30 × 10 × 50 Lidar scan

L1 errors: ∥uest−utrue∥1
∥utrue∥1

and release amount errors:
∣∣∣∥uest∥1−∥utrue∥1

∥utrue∥1

∣∣∣
where utrue denotes the ground truth concentration field and uest
the estimation from the data.

Turbulent Counts
(nFoV:wFOV)

L1 errors
(nFOV|wFOV|mFOV)

Release amount errors
(nFOV|wFOV|mFOV)

Yes 7.2 (56% | 49% | 44% ) (13% | 15% | 14% )
Yes 3.9 (49% | 37% | 32% ) (16% | 12% | 10% )
Yes 2.4 (50% | 44% | 42% ) (20% | 13% | 9% )
Yes 1.7 (50% | 46% | 49% ) (19% | 20% | 17% )
No 7.2 (39% | 28% | 30% ) (14% | 9% | 12% )
No 3.9 (39% | 23% | 25% ) (18% | 9% | 10% )
No 2.4 (34% | 23% | 23% ) (13% | 9% | 9% )
No 1.7 (46% | 27% | 25% ) (20% | 16% | 14% )

Table: 10 plumes with 1 data set each, presented in increasing SNR. “nFOV“ denotes narrow, “wFOV“
wide and “mFOV“ multiple (i.e. separately measured) fields of view respectively.



Simulations
Dispersion parameter reconstruction

(a) narrow FOV (b) wide FOV (c) multiple FOVs

Reconstructed plume centre-lines for a smooth plume and a scattering particle
concentration corresponding to a 2.4 nFOV:wFOV ratio in the measured data (line 7
in the previous table). Wide FOVs are more beneficial near the source due to higher
optical thickness of the plume.



Simulations
Dispersion parameter reconstruction

Relative deviation of reconstructed release rates corresponding to the same instance as
shown in line 7 in the previous table



Quantifying uncertainties
Problems with the likelihood & possible solutions

Quadratic expansion involving I
(pro) captures complex correlations relatively well
(con) under-estimates errors due to turbulence

MCMC based approaches can work but require RTE
evaluations for high dimensional parameters.

Replace Hon

Hoff = Ep∼Qψ [αψ(p)] with Hon

Hoff ≈ Ep∼Qψ [αψ(p)] in
order to “correct“ I

(pro) Laplace approximations of marginal posterior may be
obtained more quickly than MCMC samples.

(con) Hyper-parameters for the distribution of Qψ, αψ to
“match“ a prior for dispersion are hard to determine.



Thank You!

For details and more rigorous results can be found in (arXiv)
Imaging of atmospheric dispersion processes with
Differential Absorption Lidar

Any further questions?



Simulations
Dispersion parameter reconstruction
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(a) low concentration
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(b) high concentration

Higher concentrations are easier to recover due to larger gradients which are more
robust to noisy measurements. Identical system parameters result in a much more well
behaved differential absorption curve.



Simulations
Reconstruction of Smooth Image and Parameters of Interest

On the left all scanned directions (red dots correspond to grid
mid-points) and right single direction with wide FOV (in
green). The FOV is still rather narrow thus not too much
ambient light!
The cone is about 10m wide at 100m distance and photons are
measured in the wider FOV is the last scattering even occurs in
the green cone. The narrow FOV is assumed extremely narrow
(infinitesimal) and thus captures exclusively single scattering.



Solving the Coupled Inverse Problem
(Matrix) Concentration Inequalities

RTE evaluations can be done in parallel for each direction and need
not be accurate!

Monte Carlo integration (path tracing) provides a
straightforward way to obtain RTE evaluations as well as
gradients.

Arguably the most difficult quantity to compute is the Hessian
approximation of the form

I(ψ) = A(ψ)TA(ψ) + B

structurally we have A ∈ Rm×dim(ψ) is a random matrix with
m ≫ dim(ψ) consisting of independent blocks.

Matrix concentration inequalities (Bernstein, Chernoff) ensure
that I(ψ) is close to its expected value even when a small
number of paths is traced in each direction



Simulations
Dispersion parameter reconstruction (incl. turbulence)

(a) narrow FOV (b) wide FOV (c) multiple FOVs

Reconstructed plume centre-lines for a turbulent plume and a scattering particle
concentration corresponding to a 1.7 nFOV:wFOV ratio in the measured data (line 4
in the previous table)



Simulations
Dispersion parameter reconstruction (incl. turbulence)

Relative deviation of reconstructed release rates corresponding to the same instance as
shown in line 4 in the previous table
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