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Lay Summary

Uncertainty in physical and engineering systems can arisewhen some of thematerials param-
eters that specify these systems are unknown or incompletely specified. Such uncertainties
can be systematically analysed and specified using the general framework of Uncertainty
Quantification (UQ), which includes methods from statistics, numerical analysis and com-
putational science. Within this framework, a suitable description of lack of knowledge or
information is obtained using probabilities. Starting from some prior knowledge, the mate-
rial parameters are then specified as random variables and the goal is to study their influence
on the system, or given additional information in the form of observations, to update their
probabilistic description. This process can be challenging since it can require extreme com-
putational sources and time to complete.

In this thesis, the UQ framework is applied and examined in the case of physical systems
that are modelled by a form of Maxwell equations that describes the electromagnetic (EM)
field propagation. Such models arise for example in the Controlled-Source Electromagnetic
Method (CSEM), which is a geophysical exploration method that aims to detect and image
sub-seabed hydrocarbon reservoirs using measurements of the EM field that is generated by
a controlled source. The unknown parameter in this case is the conductivity of the materi-
als under the sea-floor. After examining the probabilistic description of such systems, the
research in this thesis proposes a solution to the challenge mentioned above, i.e. how to ef-
ficiently perform the calculations and simulations required in the application of UQ to these
models.





Abstract

Uncertainty Quantification (UQ) has been an active area of research in recent years with a
wide range of applications in data and imaging sciences. In many problems, the source of
uncertainty stems from an unknown parameter in the model. In physical and engineering
systems for example, the parameters of the partial differential equation (PDE) that model
the observed data may be unknown or incompletely specified. In such cases, one may use a
probabilistic description based on prior information and formulate a forward UQ problem of
characterising the uncertainty in the PDE solution and observations in response to that in the
parameters. Conversely, inverse UQ encompasses the statistical estimation of the unknown
parameters from the available observations, which can be cast as a Bayesian inverse problem.
The contributions of the thesis focus on examining the aforementioned forward and inverse
UQ problems for the low-frequency, time-harmonic Maxwell equations, where the model un-
certainty emanates from the lack of knowledge of the material conductivity parameter. The
motivation comes from the Controlled-Source Electromagnetic Method (CSEM) that aims to
detect and image hydrocarbon reservoirs by using electromagnetic field (EM) measurements
to obtain information about the conductivity profile of the sub-seabed. Traditionally, algo-
rithms for deterministic models have been employed to solve the inverse problem in CSEM
by optimisation and regularisation methods, which aside from the image reconstruction pro-
vide no quantitative information on the credibility of its features. This work employs instead
stochastic models where the conductivity is represented as a lognormal random field, with
the objective of providing a more informative characterisation of the model observables and
the unknown parameters. The variational formulation of these stochastic models is anal-
ysed and proved to be well-posed under suitable assumptions. For computational purposes
the stochastic formulation is recast as a deterministic, parametric problem with distributed
uncertainty, which leads to an infinite-dimensional integration problem with respect to the
prior and posterior measure. One of the main challenges is thus the approximation of these
integrals, with the standard choice being some variant of the Monte-Carlo (MC) method.
However, such methods typically fail to take advantage of the intrinsic properties of the
model and suffer from unsatisfactory convergence rates. Based on recently developed theory
on high-dimensional approximation, this thesis advocates the use of Sparse Quadrature (SQ)



x

to tackle the integration problem. For the models considered here and under certain assump-
tions, we prove that for forward UQ, Sparse Quadrature can attain dimension-independent
convergence rates that out-perform MC. Typical CSEM models are large-scale and thus addi-
tional effort is made in this work to reduce the cost of obtaining forward solutions for each
sampling parameter by utilising the weighted Reduced Basis method (RB) and the Empirical
Interpolation Method (EIM). The proposed variant of a combined SQ-EIM-RB algorithm is
based on an adaptive selection of training sets and a primal-dual, goal-oriented formulation
for the EIM-RB approximation. Numerical examples show that the suggested computational
framework can alleviate the computational costs associated with forward UQ for the perti-
nent large-scale models, thus providing a viable methodology for practical applications.
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Chapter 1

Introduction

We begin by giving an overview of the main scientific areas and concepts used in this the-
sis, namely electromagnetic (EM) inverse problems, the Controlled-Source Electromagnetic
Method (CSEM), Uncertainty Quantification (UQ), and Approximation and Model Reduction.

1.1 Electromagnetic Inverse Problems

In electromagnetic (EM) parameter estimation inverse problems the objective is to obtain
information about the electrical parameters of a physical system, using measurements of the
EM field that is generated by an active or passive source [12, 57, 126, 168]. Within the general
framework of deterministic parameter estimation problems [11], there are two closely related
models to be defined: the forward model and the inverse model. The forward model consists
of the physical model of the true system and the approximating computational model. In the
EM setting the physical model is governed by theMaxwell equations in the time or frequency
domain together with appropriate boundary conditions. The computational model can be
any appropriate discretising formulation such as the Finite Element Method (FEM), the Finite
Difference Method (FDM) or the Boundary Element Method (BEM). Given input data in the
form of a parameter profile such as a conductivity function 𝜎 , the forward model yields the
simulated EM field 𝐄within the support of the domain, including the measurement positions.
In abstract form, we can define a forward map 𝒢 with the relation 𝒢 ∶ 𝜎 → 𝒪(𝐄(𝜎)), where
𝒪 is a linear operator representing the measurement action. Note that 𝒢 and 𝐄 depend non-
linearly on 𝜎 .

In the inverse problem, the aim is to reconstruct the conductivity 𝜎 from noisy and typ-
ically limited measurement data d. Even without noise, a naïve attempt to recover 𝜎 from
the relation 𝐝 = 𝒢 (𝜎) runs quickly into issues as the process is an ill-posed problem, mean-
ing there might not be a consistent or unique solution and more importantly the process
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Fig. 1.1 A typical marine CSEM survey.

is unstable with respect to perturbations in the data. The latter is especially problematic if
noise is also taken into account. In any case, inversion can be formulated as an optimisation
problem, where the aim is to minimise a functional Φ𝑑,𝜂(𝜎) for given data and noise model.
This functional includes a term corresponding to an appropriate distance measure between
data and output of the forward model. In order to make the problemwell-posed an additional
term is added which regularises the process and allows the stable recovery of a solution. This
is the basis of generalised Tikhonov regularisation [11, 44]. Of course, the obtained solution
is somewhat arbitrary and reflects a particular choice of regularisation. As discussed later,
a Bayesian statistical description is a more natural approach to model prior beliefs and to
incorporate data, with the added benefit of a natural characterisation of the uncertainty.

1.2 The Controlled-Source Electromagnetic Method

The Controlled-Source Electromagnetic Method (CSEM) is a marine geophysical exploration
method, which aims to detect and image hydrocarbon reservoirs by using EM field measure-
ments to obtain information about the conductivity profile of the sub-seabed [9, 59, 171]. In
CSEM, a towed active source generates a low-frequency electromagnetic field and receivers
record field measurements that contain information about the conductivity profile of the
sub-seabed sediments. The pertinent inverse problem entails the inversion of these measure-
ments to detect and image the conductivity of the target area. This has been an active research
area in recent years with increasing number of publications and applications in industry, and
can be considered as complimentary to other exploration methods [112].

As depicted in fig. 1.1, in a typical marine CSEM survey, an 100 − 300m electric dipole
source emitting 100 − 1000A of current at a low frequency of 0.1 − 10Hz is towed 25 −
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100m above the sea floor. The generated low-frequency electromagnetic field is described
as a forced oscillation of energy that diffuses in the conductive seawater and the sub-seabed
sentiments, and is affected by the conductivity of the transmissionmedium through inductive
and galvanic mechanisms [33, 160]. This is in contrast to EM propagation in the air which
is only influenced by geometric spreading and is referred to as the air-wave. A hydrocarbon
reservoir is characterised by increased resistivity relative to the surrounding medium and it
represents a conductivity anomaly which influences the electromagnetic field measurements
as measured by an array of receivers deployed at the sea floor or towed by a boat. The data
recorded by the receivers are field components (or amplitude and phase) for each receiver
and operating frequency. The goal of CSEM is to process this data to detect and image the
reservoir.

Compared to the seismic method, CSEM features increased sensitivity of the data to the
hydrocarbon target. Additionally, it’s possible at least in principle to design the survey in
order to achieve optimal results in some sense. On the other hand, CSEM has low resolution
compared to the high resolution of high-frequency wavemethods such as seismic. Regarding
the modelling aspect, two considerations are whether it is favourable to use time-domain
(transient) or frequency domainmodelling of the EMfield and how tomodel the air-layer. We
will not delve deeper into these issues; suffice it to say that the first one is largely a modelling
choice [58] while the second one can be ignored in deep-water surveys. In this thesis, the
physical model will be the low-frequency, time-harmonic Maxwell equations, defined on a
domain that includes a water and a sub-seabed layer.

1.3 Uncertainty Quantification

In physical and engineering systems, the amount of available information is typically in-
sufficient to characterise, predict and control their behaviour with certainty. The resulting
uncertainty is a state of knowledge that is inadequately constrained by information. It can
be quantified using probability, which is here understood representing rational degrees of be-
lief. When new information or data becomes available, probabilities are updated using a rule:
the Maximum Entropy rule or as a special case Bayes’ rule [31]. This probabilistic descrip-
tion of uncertainty will be used in this thesis under the general framework of Uncertainty
Quantification (UQ) [81, 152, 156].

UQ has been an active area of research in recent years with a wide range of applications.
It is particularly applicable in problems where there is a physical or mathematical model de-
scribing a system. As such, in addition to probability theory, it includes a set of ideas and
methods in applied mathematics, computational and computer science. The source of uncer-
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tainty in UQ can be in the inputs or parameters, the model specification itself, the numerical
approximation, etc. In physical and engineering systems for example, the parameters of the
Partial Differential Equation (PDE) that model the observed data may be unknown or in-
completely specified. In such cases, one may use a probabilistic description based on prior
beliefs and formulate a forward UQ problem of characterising the uncertainty in a output
of interest, such as the PDE solution or the observations, in response to that in the parame-
ters. Conversely, inverse UQ encompasses the statistical estimation of the PDE parameters
or some other output from the available observations, which can be cast as a Bayesian in-
verse problem [108, 155]. UQ analysis in this case proceeds using stochastic PDEs with the
input (parameters) and the output (solution) described as random fields [3, 120]. Methods for
the forward solution and statistical analysis of these stochastic PDEs are reviewed in Gun-
zburger et al. [87] and Xiu [163] and include the Monte Carlo method and its variants [51,
82], the Quasi-Monte Carlo method [68, 83, 84, 141], the stochastic collocation [14, 73, 127,
157, 164] and stochastic Galerkin [15, 19, 80, 165] methods.

A general methodology that is the approach adopted in this thesis is to reformulate the
stochastic problem into a deterministic, parametric form in terms of a countably infinite
sequence of variables (𝑦)𝑗 = 𝐲. In this formulation the uncertainty is distributed in y and
UQ becomes an infinite-dimensional integration problem for the statistical characterisation
of some output of interest. For forward UQ this means we need to compute a single integral
with respect to the prior measure, while for inverse problems we need to compute a ratio of
integrals with respect to the posterior measure [63, 155]. As one might expect, the latter is a
more challenging task both for theoretical analysis and computationally.

1.4 Approximation and Model Reduction

One of the common challenges that arises in UQ applications is the high computational cost
involved in the computation of the estimators. There are two major causes that contribute
to this problem: the high-dimensionality of the probabilistic parameter space and the high
cost of evaluating the forward map 𝑢 ∶ 𝐲 → 𝑢(𝐲) that assigns an output solution 𝑢(𝐲) from
an input 𝐲 in a numerical model. The first cause is commonly referred to as the curse of
dimensionality, loosely meaning that to achieve a required accuracy, there is a prohibitively
large growth in computational cost as the number of dimensions increases. This obstacle can
be overcome using the Monte-Carlo method or its variants which exhibit a convergence rate
that is unaffected by dimensionality. However, this rate is rather low, equal to 1/2, which
means that improving accuracy one decimal point quickly becomes intractable as it requires
102 times more evaluations of the forward map. This is especially problematic when applica-
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tion of the forward map is itself costly. Classical approximation methods, using for example
tensor polynomial spaces, try to attack this issue by exploiting some property of the map
such as smoothness1 with respect to the parametric variables. Unfortunately this approach
suffers from the curse of dimensionality; if the smoothness is of order s, then the convergence
rate deteriorates as 𝑠/𝑑 for 𝑑 dimensions. What is needed for efficient UQ is a method that
can achieve rates that are better than Monte-Carlo and additionally be immune to the curse
of dimensionality. To achieve this task, it is essential to take advantage of properties of both
the forward map and the input. Examples of such properties include sparsity or summability,
anisotropy, parametric smoothness, fast decay rates of 𝑛-widths and low-rank structure [16,
23, 24, 39, 46, 47, 53, 54, 129]. In this work we will focus on two particular approaches that
take advantage of these features and lead to an expression of the solution u of the form

𝑢(𝐱, 𝐲) = ∑
𝑚

𝑐𝑚(𝐱)𝜙𝑚(𝐲), (1.4.1)

where 𝐱 is the spatial and 𝐲 is the parametric variable, while 𝑐𝑚(𝐱) and 𝜙𝑚(𝐲) are functions
from a basis or dictionary.

The first method is sparse polynomial approximation [17, 46, 47, 52, 53], which chooses
𝜙𝑚(𝐲) to be a polynomial basis, e.g. based on Legendre or Hermite polynomials, and 𝑐𝑚(𝐱)
to be coefficient functions in the Banach space V associated with the PDE. The method ex-
ploits the sparsity or summability of the parametric representation of the stochastic input
and the behaviour of the parametric partial derivatives of the parameter-to-solution map as
derived from the properties of the PDE. Under appropriate conditions, sparsity of the input
is preserved in some sense as sparsity of the output, so that using sparse polynomial spaces
for the approximation in the parametric variable leads to a best 𝑚-term truncated approx-
imation with low number of terms 𝑚 in the expansion. Analysis shows that in such case,
the convergence rate is independent of the number of dimensions and can be better than the
rate of Monte-Carlo methods. In practice, the coefficients 𝑐𝑚 can be approximated via inter-
polation by using evaluations of the forward map at deterministically chosen points 𝐲. The
points are taken to belong to a sparse grid that is constructed as a union of tensorisations of
a univariate sequence of points. This interpolation approach is equivalent to the stochastic
collocation method [14, 127]. As is known, interpolation leads to corresponding quadrature
constructions for the approximation of integrals, so sparse polynomial approximation via
interpolation gives rise to Sparse Quadrature (SQ) [143, 144, 147], effectively discretising
the integrals, while inheriting the favourable convergence properties. A remaining ques-
tion is how to refine the approximation based on the different importance of the parametric

1Smoothness here is understood to mean the existence of parametric partial derivatives up to order 𝑠.
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dimensions. Both a priori analysis and heuristic adaptive algorithms [78] can be used for
this purpose, with the latter being more generally applicable but also more computationally
expensive.

The second approximation method employed in this thesis is the Reduced Basis (RB)
method [88, 99, 133, 137], which is a projection-based model reduction method. Contrary to
sparse polynomial approximation which a priori chooses a polynomial basis, RB constructs
a problem-dependent basis 𝑐𝑚(𝐱) that spans a subspace 𝑉𝑁 of the solution space 𝑉 with two
desirable properties. Firstly, 𝑉𝑁 has much smaller dimension than the dimension of the space
𝑉ℎ in which the Finite Element Method, Finite Difference Method or some other numerical
approximation is defined, i.e. dim𝑉𝑁 ≪ dim𝑉ℎ for 𝑉𝑁 ⊂ 𝑉ℎ ⊂ 𝑉 . Secondly, the RB solution
obtained by projection of the PDE equations onto 𝑉𝑁 is a good approximation to the numer-
ical solution, up to some accuracy, for all 𝑦 . In other words, RB aims to approximate the
solution manifold ℳ ∶= {𝑢(𝐲)} using low-dimensional spaces, such that given the reduced
space, one can obtain a fast answer to a query for any 𝐲. The rationale behind this approach
is mainly based on fast decay rates of the linear 𝑛-widths of the solution manifold, which
give a benchmark for its approximability by linear, 𝑛-dimensional reduced spaces [66]. De-
pending on how optimality is measured, reduced spaces can be constructed via a Singular
Value Decomposition (SVD) (albeit with considerable computational cost) or using a greedy
approach. Greedy algorithms have been proven to provide RB spaces with approximation
error decay rate comparable to the Kolmogorov 𝑛-width decay rate [27, 67]. Thus, due to
the proven properties of greedy algorithms and their computational efficiency compared to
SVD, we will focus on this approach.

In order to be efficient, greedy RB should ideally be driven by a rigorous and effective2

error estimator. Additionally, the computation of the error estimator and the response to
a solution query for any 𝐲 are tasks that should have low computational complexity. This
can be achieved by using an offline-online decomposition, where the offline phase includes
computationally expensive tasks such as solving the unreduced PDE, while the online phase
includes all computational cheap tasks. A prerequisite is the availability of an affine or sepa-
rable expansion for the PDE parameter in terms of functions 𝑐𝑚(𝐱) and 𝜙𝑚(𝐲), similar to the
expansion in eq. (1.4.1). Such an expansion can be achieved through the Empirical Interpola-
tion Method (EIM) [20], which similar to the RB method uses a greedy construction to build
a function-dependent basis 𝑐𝑚(𝐱) based on snapshots at chosen 𝐲. The two methods, RB and
EIM, have many similarities and can be used in a combined EIM-RB scheme as explained
in more detail later in this thesis. A question that needs to be answered in practice is how

2Rigorous is an error estimator that provides an upper bound, while effective means that the estimator
“follows” closely the behaviour of the true error.
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to choose the possible candidates 𝐲, i.e. how to discretise the high-dimensional parametric
space. As mentioned earlier, sparse grids are a general way to achieve such a (generally
anisotropic) discretisation. Therefore, a promising approach is the combination of EIM-RB
model reduction and of dimension-adaptive SQ schemes for the estimation of the pertinent
integrals as suggested in Chen and Quarteroni [36] in the forward UQ context and in Chen
and Schwab [40, 41] for the Bayesian inverse problem.

The choice of RB model reduction is certainly not the only one possible nor is it the most
appropriate choice for all applications. There is a variety of methods that provide surrogate
models for the computationally efficient evaluation of forward maps (see e.g. Frangos et al.
[77] for a review). As mentioned, greedy RB belongs to the class of projection-based model
reduction methods which includes also Proper Orthogonal Decomposition (POD), balanced
truncation and methods based on Krylov subspaces or more generally on rational interpo-
lation (see Benner et al. [21] and Nouy [129] for a review). These methods share common
properties but use different error measures and schemes to construct the reduced spaces. In
general, using projection-based methods has the advantages that the reduced models obey
the properties of the full models and are also amenable to rigorous error analysis. A disad-
vantage is that they require access to the full model operators, so in this sense they are intru-
sive. For the time-domain, magneto-quasistatic Maxwell equations, the balanced truncation
method has been investigated in Kerler and Stykel [111], while a POD-greedy RB method
and a (global and local) Krylov subspace method were examined and compared in Jung et al.
[107]. Although balanced truncation and Krylov-based model reduction are mainly aimed at
dynamical, state-space formulations, they can also be used in the parametric setting consid-
ered here by constructing many local reduced spaces or a global one. For the models studied
in this thesis, the choice of the greedy RB method is justified by the following considera-
tions: i) the high-dimensionality of the parametric space which favours an adaptive greedy
construction of the reduced space over a POD-based approach, ii) the fact that the reduced
model inherits the properties of the full model in terms of well-posedness and stability, iii)
the availability of a-posteriori error estimators that can guide the adaptive greedy strategy,
iv) the existence of theoretical analysis for the (weak) greedy algorithm that gives conver-
gence rates comparable to the Kolmogorov 𝑛-widths, v) the fact that the greedy construction
of the reduced space can be combined with the simultaneous construction of an affine ap-
proximation, which enables an offline-online decomposition of the required computational
work. Certainly, there are disadvantages such as the dependence of the approximation on
the chosen snapshots and the possibly heavy computational work associated with the offline
construction of the reduced basis. Also, some of the points above are shared by other meth-
ods, for example the work in Feng et al. [76] gives a-posteriori error bounds for a general
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class of parametric model reduction methods. However, at least to our knowledge, there
isn’t a model reduction method that is both well-suited and computationally efficient for the
problem under consideration and also provides some clear advantage over the greedy RB
method.

In the context of EM problems, wemention that RB has been applied to electromagnetism
in Hesthaven et al. [98] for the electric field integral equation, in Chen et al. [43], Hess and
Benner [95], Hess et al. [96], Hess and Benner [97], and Kirchner et al. [114] for the time-
harmonic Maxwell equations and in Benner and Hess [22] for the time-dependent case. We
also note that a combination of Smolyak sparse grid stochastic collocation and PODmodel re-
duction for the time-harmonic Maxwell equations has been examined in Benner and Schnei-
der [25], but the uncertainty there is in terms of a finite set of random variables representing
material parameters in geometrical regions.

1.5 Objective and Contributions

The objective of this thesis is to examine the aforementioned forward and inverse UQ prob-
lems for the low-frequency, time-harmonic Maxwell equations, where the model uncertainty
emanates from the lack of knowledge of the material conductivity parameter. As men-
tioned, the application we have in mind is the geophysical Controlled-Source Electromag-
netic method where the large-scale nature of the discretised systems prohibits any attempt
for Uncertainty Quantification using standard methods such as Monte-Carlo. The contribu-
tions of the thesis are focused on the following areas.

• Traditionally, algorithms for deterministic models have been employed to solve the
inverse problem in CSEM by optimisation and regularisation methods [1, 57, 69, 85, 86,
148], which aside from the image reconstruction provide no quantitative information
on the uncertainty or credibility of its features. This work employs instead probabilis-
tic models with the goal of providing a more informative characterisation of the model
observables and the unknown parameters. Specifically, we consider models consisting
of a deterministic and a stochastic conductivity layer, the latter represented as a log-
normal random field with specified covariance function. The variational formulation
of these stochastic models is first analysed and proven to be well-posed under suitable
conditions.

• For computational purposes the stochastic formulation is re-cast as a determinis-
tic, parametric problem with distributed uncertainty, which leads to an infinite-
dimensional integration problem with respect to the prior and posterior measure.
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For the models considered here and under certain conditions, we prove that for for-
ward UQ, Sparse Quadrature can attain dimension-independent convergence rates that
out-performMCmethods. Our analysis is based on recent theory on high-dimensional
approximation [17] and SQ [35, 75]. With regard to the more challenging inverse UQ,
we apply the methodology in Chen et al. [42] and Schillings and Schwab [142] and
report a numerical experiment with our results.

• Typical CSEMmodels are large-scale and thus additional effort is made in this work to
reduce the cost of obtaining forward solutions for each sampling parameter by utilis-
ing the weighted Reduced Basis method (RB) and the Empirical Interpolation Method
(EIM). The proposed variant of a combined SQ-EIM-RB algorithm is based on an adap-
tive selection of training sets and a primal-dual, goal-oriented formulation for the EIM-
RB approximation, based on the work in [36, 40, 41, 128], as adapted to the specific
model under examination and extended for the lognormal random field case. Numeri-
cal examples show that the suggested computational framework can alleviate the com-
putational costs associated with UQ for the pertinent large-scale models, thus provid-
ing a viable methodology for practical applications.

• In this thesis we introduce a rigorous treatment of point sources and measurements
through regularisation as in Hosseini et al. [103]. This enables a consistent formulation
of the primal and dual problems.

• Two other novelties in this work are the use of anisotropic covariance functions for the
random fields and the derivation of a posteriori error estimators for the SQ-EIM-RB
method.

• Finally, an output of the research performed in this thesis is the implementation of
the proposed algorithms in MATLAB® [122] code. The deterministic forward solver
for Maxwell equations, together with functions for the regularised inversion of CSEM
models are publicly available (see Appendix A), while the code for the stochastic prob-
lem is available from the author upon request.

A manuscript that includes the description, analysis and approximation methodology of the
forward UQ problem presented in this thesis has been submitted for publication [110].

1.6 Outline

This thesis proceeds as follows: chapter 2 introduces the deterministic model with a descrip-
tion of the relevant low-frequency, time-harmonic Maxwell equations in connection with the
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models used in CSEM. The corresponding weak formulation is analysed and a regularisation
approach is proposed for the representation of sources and measurements. After an expo-
sition of the numerical approximation by the Finite Element Method, chapter 2 concludes
with a brief description of the CSEM inverse problem and an example reconstruction using
regularised inversion. Chapter 3 begins with a discussion of the properties of random fields
and a presentation of the stochastic model which is recast in a parametric formulation and
proven to be well-posed under suitable conditions. It concludes by posing the forward and
inverse UQ problems as integration problems. Chapter 4 focuses on the approximation of the
pertinent integrals by the SQ and RB-EIM methods. The convergence properties of the SQ
method as applied to forward UQ are analysed and dimension-independent rates are proven.
After exposition of the RB-EIM model reduction method and derivation of a posteriori error
estimators, a combined SQ-EIM-RB is proposed for forward UQ. Chapter 5 includes numer-
ical experiments for forward UQ using the SQ and SQ-EIM-RB algorithms and an example
for the Bayesian inverse problem. Chapter 6 concludes this thesis with a discussion of the
results and an outlook for future research.

1.7 Notation

In this section, we collect some notational conventions. We denote by 𝐷 ⊂ ℝ3 a bounded,
Lipschitz, polyhedral domain with connected boundary 𝜕𝐷, by 𝐧 the outward normal unit
vector and by ‖ ⋅ ‖2 the Euclidean norm induced by the inner product (⋅, ⋅). The function space
of infinitely differentiable functions with compact support in 𝐷 is denoted by 𝐶∞0 (𝐷). For a
measure space (𝑋 , Σ, 𝛾 ), with measure 𝛾 , we denote by 𝐿𝑝(𝑋 , 𝑌 ) the space of Σ-measurable
functions 𝑢 ∶ 𝑋 → 𝑌 with norm

‖𝑢‖𝐿𝑝(𝑋 ,𝑌 ) = (∫𝑋
‖𝑢(𝑥)‖𝑝𝑌 𝑑𝛾(𝑥))

1/𝑝
= 𝔼 [‖𝑢‖𝑝𝑌 ]

1/𝑝 , (1.7.1)

when 1 ≤ 𝑝 < ∞ and norm
‖𝑢‖𝐿∞(𝑋 ,𝑌 ) = ess sup

𝑥∈𝑋
‖𝑢(𝑥)‖𝑌 , (1.7.2)

when 𝑝 = ∞, where ‖ ⋅ ‖𝑌 is the norm of a separable Banach space 𝑌 .
When 𝑋 = Θ is a sample space and 𝛾 = ℙ is a probability measure, we get the Bochner

space of 𝑝-integrable random variables 𝑢 ∶ Θ → 𝑌 , that take values in 𝑌 , denoted by
𝐿𝑝(Θ, 𝑌 ). When 𝑋 = 𝐷, 𝑌 = ℂ, Σ is the Borel 𝜎-algebra and 𝛾 is the Lebesgue measure, we
get the standard 𝐿𝑝(𝐷) spaces. In particular, for 𝑝 = 2 we have the Hilbert space of square-
integrable functions 𝐿2(𝐷) with inner product (𝑢, 𝑣)𝐿2(𝐷) = ∫𝐷 𝑢𝑣 𝑑𝐱 where 𝑣 is the complex
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conjugate of 𝑣 . We will also need the Sobolev spaces

𝐻 𝑘(𝐷) = 𝑊 𝑘,2(𝐷) = {𝑢 ∈ 𝐿2(𝐷) ∶ 𝜕𝜶𝑢 ∈ 𝐿2(𝐷) ∀ |𝜶 | < 𝑘}, (1.7.3)
𝑊 𝑘,∞(𝐷) = {𝑢 ∈ 𝐿∞(𝐷) ∶ 𝜕𝜶𝑢 ∈ 𝐿∞(𝐷) ∀ |𝜶 | < 𝑘}, (1.7.4)

where 𝑘 is a nonnegative integer and 𝜕𝜶𝑢 = 𝜕 |𝜶 |𝑢/𝜕𝑥𝑎11 𝜕𝑥𝑎22 𝜕𝑥𝑎33 . For vector-valued functions,
we analogously use the spaces 𝐶∞0 (𝐷, ℂ3), 𝐿𝑝(𝐷, ℂ3) and 𝐻 𝑘(𝐷, ℂ3). The space of square-
integrable vectors that also have a square-integrable curl is defined by

𝐻(curl, 𝐷) = {𝐮 ∈ 𝐿2(𝐷, ℂ3) ∶ ∇ × 𝐮 ∈ 𝐿2(𝐷, ℂ3)}, (1.7.5)

with norm
‖𝐮‖𝐻(curl,𝐷) = (‖𝐮‖2𝐿2(𝐷,ℂ3) + ‖∇ × 𝐮‖2𝐿2(𝐷,ℂ3))

1/2
. (1.7.6)

The subspace 𝐻0(curl, 𝐷) of functions 𝐮 ∈ 𝐻(curl, 𝐷), with vanishing tangential trace on the
boundary 𝜕𝐷, is defined as the completion of 𝐶∞0 (𝐷, ℂ3) in the 𝐻(curl, 𝐷) norm.

A weighted inner product for a Hilbert space 𝐻 is given by

(𝐮, 𝐯)𝑔 = ∫𝐷
𝑔𝐮 ⋅ 𝐯 𝑑𝑥, (1.7.7)

where 𝑔(𝑥) ∈ 𝐿∞(𝐷; ℝ) and ess inf𝐱∈𝐷 𝑔(𝑥) > 0. The associated induced norm is

‖𝐮‖𝑔 = √(𝐮, 𝐮)𝑔 .

We have the following norm equivalence

√
ess inf𝑥∈𝐷 𝑔(𝑥)‖𝑢‖ ≤ ‖𝑢‖𝑔 ≤ √‖𝑔‖𝐿∞(𝐷)‖𝑢‖. (1.7.8)

For Banach spaces 𝑋, 𝑌 , the operator norm of a linear operator 𝐴 ∶ 𝑋 → 𝑌 is defined as

‖𝐴‖𝑋→𝑌 = sup
𝑥∈𝑋\{0}

‖𝐴𝑥‖𝑌
‖𝑥‖𝑋

, (1.7.9)

and we denote by 𝐿(𝑋 , 𝑌 ) the space of bounded linear operators from 𝑋 to 𝑌 . The Banach
space of all bounded anti-linear functionals 𝑓 (⋅) on 𝑋 , called the anti-dual of 𝑋 , is denoted
by 𝑋 ∗ and is equipped with the dual norm ‖𝑓 ‖𝑋→ℂ. The duality pairing is written as 𝐻 ∗⟨⋅, ⋅⟩𝐻 .
The adjoint of an operator 𝐴 ∈ 𝐿(𝑋 , 𝑌 ) is 𝐴∗ ∈ 𝐿(𝑌 ∗, 𝑋 ∗) such that for 𝑦∗ ∈ 𝑌 ∗, 𝑌 ⟨𝐴𝑥, 𝑦∗⟩𝑌 ∗ =
𝑋 ⟨𝑥, 𝐴∗𝑦∗⟩𝑋 ∗ , for all 𝑥 ∈ 𝑋 . For a Hilbert space 𝐻 , the linear Riesz isometry 𝑅𝐻 ∗ ∶ 𝐻 ∗ → 𝐻 is
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such that for 𝑓 ∈ 𝐻 ∗ and 𝑣 ∈ 𝐻 , 𝑓 (𝑣) = (𝑅𝐻 ∗𝑓 , 𝑣)𝐻 for all 𝑣 ∈ 𝐻 and ‖𝑢‖𝐻 = ‖𝑅𝐻𝑢‖𝐻 ∗ . Given
Hilbert spaces 𝐻, 𝐾 , the Hilbert space adjoint of 𝐴 ∈ 𝐿(𝐻 , 𝐾) is 𝐴𝐻 such that (𝐴𝑥, 𝑦)𝐾 =
(𝑥, 𝐴𝐻𝑦)𝐻 for all 𝑥 ∈ 𝐻 , 𝑦 ∈ 𝐾 . If we identify 𝐻 ≅ 𝐻 ∗ and 𝐾 ≅ 𝐾 ∗ by the Riesz map, the
adjoint and Hilbert space adjoint of 𝐴 are equivalent i.e. 𝐴∗ = 𝐴𝐻 . A sesquilinear form 𝑎(⋅, ⋅)
is linear in its first argument and anti-linear in its second argument. The space of all linear
functionals on a Banach space 𝑋 is denoted by 𝑋 ′ and we have 𝑋 ∗ = 𝑋 ′.

For 𝐻 and 𝐾 two Hilbert spaces, {𝜙𝑗 ∶ 𝑗 ∈ ℕ} an orthonormal basis of 𝐻 , we denote
by 𝐻𝑆(𝐻 , 𝐾) the Banach space of bounded linear operators 𝐴 ∈ 𝐿(𝐻 , 𝐾), with finite Hilbert-
Schmidt norm

‖𝐴‖2𝐻𝑆(𝐻 ,𝐾) =
∞
∑
𝑗=1

‖𝐴𝜙𝑗‖2𝐾 , (1.7.10)

and such operators are called Hilbert-Schmidt. The trace of a positive definite operator 𝐴 ∈
𝐿(𝐻 , 𝐻) is defined as Tr𝐴 = ∑∞

𝑗=1(𝐴𝜙𝑗 , 𝜙𝑗) and the operator is called trace-class if its trace is
finite.

We also make use of multi-index notation. Define by ℱ the countable index set of all
sequences 𝝂 = (𝜈𝑗)𝑗≥1 of non-negative integers which are finitely supported (i.e. with a finite
number of non-zero elements). For 𝝂, 𝝁 ∈ ℱ we use

|𝝂| = ∑
𝑗≥1

𝜈𝑗 < ∞, 𝝂! = ∏
𝑗≥1

𝜈𝑗 !, (𝝂𝝁) = ∏
𝑗≥1

(𝜈𝑗𝜇𝑗
), (1.7.11)

with (𝑛𝑚) = 0 if 𝑚 > 𝑛. By 𝝁 ≤ 𝝂 we denote the ordering 𝜇𝑗 ≤ 𝜈𝑗 for all 𝑗. The cardinality
of an index set Λ ⊂ ℱ is denoted by #(Λ) and the support of a sequence 𝝂 is denoted by
supp(𝝂) = {𝑗 ∶ 𝜈𝑗 ≠ 0}.



Chapter 2

The Deterministic Problem

In most real-world cases it is impossible to find an analytic solution of Maxwell equations. In
these cases, a numerical solution is sought by modelling the electromagnetic field and using
the toolbox of computational electromagnetism [106, 138, 150]. In the context of EM mod-
elling, the forward problem requires the computation of the EM fields given the domain’s
properties and a complete set of boundary conditions. Subject to some mild conditions, this
problem admits a unique solution for the fields in the closure of the domain, from where
the measurements can be simulated. The source-receiver data mapping that is imperative to
the inverse problem (e.g. applied currents, measured electromagnetic fields, incident fields,
scattered fields) is embodied within this forward model. It is thus essential to develop an
efficient and accurate numerical approximation. In the following, we describe the physical,
mathematical and computational models that are suitable for representing typical CSEM sur-
veys.

2.1 Maxwell Equations

Maxwell equations describe the electromagnetic field in terms of four vector functions of
space and time: the electric field 𝐄(𝐱, 𝑡) [Vm−1], the magnetic induction 𝐁(𝐱, 𝑡) [T], the mag-
netic field 𝐇(𝐱, 𝑡) [Am−1] and the electric displacement 𝐃(𝐱, 𝑡) [Cm−2] [105, 167]. All phys-
ical quantities here and in the rest of this thesis are expressed in SI units unless otherwise
noted.
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The differential form of Maxwell equations in matter is

∇ ⋅ 𝐃 = 𝜌𝑓 , (2.1.1a)
∇ ⋅ 𝐁 = 0, (2.1.1b)

∇ × 𝐄 = −𝜕𝐁𝜕𝑡 , (2.1.1c)

∇ × 𝐇 = 𝐣𝑓 + 𝜕𝐃
𝜕𝑡 . (2.1.1d)

Here 𝜌𝑓 (𝐱, 𝑡) [Cm−3] is the free charge density and 𝐣𝑓 (𝐱, 𝑡) [Am−2] is the free current density,
both considered extrinsic to the medium. Finally, the continuity equation, which is implicit
in eq. (2.1.1d), represents the conservation of charge

𝜕𝜌𝑓
𝜕𝑡 + ∇ ⋅ 𝐣𝑓 = 0. (2.1.2)

2.1.1 Time-Harmonic Maxwell Equations

If we assume that the electromagnetic field is time-harmonic [94] of the form

𝐄(𝐱, 𝑡) = Re (�̂�(𝐱)𝑒−𝚤𝜔𝑡) , (2.1.3)

with �̂�(𝐱) being a complex-valued vector function of position and similarly for the other
quantities in eq. (2.1.1a)-eq. (2.1.1d), then by substitution we obtain the Maxwell equations
in the frequency domain

∇ ⋅ �̂� = ̂𝜌𝑓 , (2.1.4a)
∇ ⋅ �̂� = 0, (2.1.4b)
∇ × �̂� = 𝚤𝜔�̂�, (2.1.4c)
∇ × �̂� = �̂�𝑓 − 𝚤𝜔�̂�. (2.1.4d)

An equivalent form of the equations can also be obtained by taking the Fourier transform in
time. In this sense, the time-domain EM fields can be viewed as the compositions of time-
harmonic fields.

2.1.2 Constitutive Relations

To complete the system of equations we need the constitutive relations that describe the
medium-field interactions explicitly. Assuming medium linearity, these relate the linear re-
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sponses of matter to the electromagnetic field. If the responses are causal, the electric dis-
placement 𝐃 is written as

𝐃(𝐱, 𝑡) = 𝜖0𝐄(𝐱, 𝑡) + 𝜖0 ∫
∞

−∞
𝜒𝑒(𝑡 − 𝑡′)𝐄(𝐱, 𝑡′) 𝑑𝑡′, (2.1.5)

where 𝜖0 ≈ 8.854 × 10−12[Fm−1] is the vacuum dielectric permittivity and we have also as-
sumed the causal condition 𝜒𝑒(𝑡 < 0) = 0 for the electric susceptibility. Taking the Fourier
transform, the relation becomes

�̂�(𝐱, 𝜔) = 𝜖0�̂�(𝐱, 𝜔) + 𝜖0 ̂𝜒𝑒(𝜔)�̂�(𝐱, 𝜔) = ̂𝜖(𝜔)�̂�(𝐱, 𝜔), (2.1.6)

This defines the frequency-dependent absolute dielectric permittivity ̂𝜖(𝜔). We can similarly
define the frequency-dependent absolute magnetic permeability �̂�(𝜔) = 𝜇0 + 𝜇0 ̂𝜒𝑚(𝜔), where
𝜇0 = 4𝜋 × 10−7 [Hm−1] is the vacuum magnetic permeability and 𝜒𝑚 is the magnetic sus-
ceptibility. The vacuum permittivity and permeability are related with the speed of light as
𝑐 = √1/𝜇0𝜖0. The relative permittivity and permeability are defined as 𝜖𝑟 = 𝜖/𝜖0 and 𝜇𝑟 = 𝜇/𝜇0.
If we also allow the parameters to vary with position, we get the relations

�̂� = ̂𝜖(𝐱, 𝜔)�̂�, (2.1.7a)
�̂� = �̂�(𝐱, 𝜔)�̂�. (2.1.7b)

If the medium is conductive and obeys Ohm’s law, we also have that

�̂�𝑓 = �̂�(𝐱, 𝜔)�̂� + �̂�ext, (2.1.8)

where �̂� is the frequency-dependent electric conductivity and we have assumed that there
might exist an explicit external current density �̂�ext.

Note that in the general case where the medium is inhomogeneous, dispersive and an-
isotropic, the constitutive parameters are positive-definite tensor functions of position and
frequency. The time-harmonic Maxwell equations take the form

∇ ⋅ ( ̂𝜖�̂�) = ̂𝜌𝑓 , (2.1.9a)
∇ ⋅ (�̂��̂�) = 0, (2.1.9b)

∇ × �̂� = 𝚤𝜔�̂��̂�, (2.1.9c)
∇ × �̂� = (�̂� − 𝚤𝜔 ̂𝜖)𝐄 + �̂�ext, (2.1.9d)
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and the Fourier transformed continuity equation is

∇ ⋅ (�̂�𝐄 + �̂�ext) = 𝚤𝜔 ̂𝜌𝑓 . (2.1.10)

From now on, we will drop the hat notation and it will be clear from context whether we
refer to the frequency-domain quantities or the time-domain quantities.

2.1.3 The Second-Order Time-Harmonic Maxwell System

Solving eq. (2.1.9c) for 𝐇 and substituting in eq. (2.1.9d), yields the time-harmonic electric
field wave equation

∇ × (𝜇−1∇ × 𝐄) − 𝚤𝜔(𝜎 − 𝚤𝜔𝜖)𝐄 = 𝚤𝜔𝐣ext. (2.1.11)

Using the continuity equation we can eliminate the charge density from eq. (2.1.9a) to get

∇ ⋅ (𝜖𝐄) = 1
𝚤𝜔∇ ⋅ (𝜎𝐄 + 𝐣ext) . (2.1.12)

Equations (2.1.11) and (2.1.12) form the second-order time-harmonic Maxwell system [94].
In other words, eq. (2.1.11) together with the continuity equation are equivalent with
eqs. (2.1.9a) to (2.1.9d).

2.1.4 Approximations

From the general form of Maxwell equations, we can arrive at approximations depending on
the characteristic quantities (length and time scale) of a specific domain. In particular, we
can arrive at the static and quasi-static approximations. The static case is easily derived by
requiring that all time derivatives vanish. Thus we get ∇ × 𝐄 = 0 for the electric field which
together with eq. (2.1.1a) describe the electrostatic case. Similarly, for the magnetic field we
have ∇ × 𝐇 = 𝐣𝑓 which together with eq. (2.1.1b) describe the magnetostatic case.

Quasi-Static Approximations

Quasi-static approximations are true when the domain’s length scale 𝐿 is small compared
to the electromagnetic wavelength associated with the time-scale 𝑇 of the problem, see e.g.
[105]. To quantify this sentence it’s useful to use dimensional analysis as in Zangwill [167].
We also make use of the Helmholtz decomposition theorem (see e.g. Kirsch and Hettlich
[115]) to split the electric field as 𝐄 = 𝐄𝐹 + 𝐄𝐶 into divergence free ∇ ⋅ 𝐄𝐹 = 0 and irrotational
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∇ × 𝐄𝐶 = 0 parts. This results into the following equations

∇ × 𝐄𝐹 = 𝚤𝜔𝐁, (2.1.13)
∇ ⋅ (𝜖𝐄𝐶) = 𝜌𝑓 . (2.1.14)

We can now use dimensional analysis to obtain

∇ ∼ 1/𝐿, (2.1.15a)
𝜕
𝜕𝑡 ∼ 1

𝑇 ∼ 𝜔, (2.1.15b)

‖𝐣𝑓 ‖2 ∼ 𝜔𝐿𝜌, (2.1.15c)
‖𝐄𝐶 ‖2 ∼ 𝐿𝜌/𝜖, (2.1.15d)
‖𝐄𝐹 ‖2 ∼ 𝜔‖𝐁‖2𝐿, (2.1.15e)
‖𝐁‖2 ∼ 𝐿𝜇‖𝐣𝑓 ‖2 + 𝐿𝜔𝜇𝜖(‖𝐄𝐶 ‖2 + ‖𝐄𝐹 ‖2). (2.1.15f)

We can now derive the dimensional ratio

‖𝐄𝐹 ‖2
‖𝐄𝐶 ‖2

∼ 𝜔2

𝑤 − 𝜔2 , (2.1.16)

where 𝑤 = 1/𝐿2𝜇𝜖. When 𝜔2 ≪ 𝑤 we have that ‖𝐄𝐹 ‖2 ≪ ‖𝐄𝐶 ‖2 and we can ignore the
electric field 𝐄𝐹 which is associated with the magnetic field time-derivative. In other words,
we set ∇ × 𝐄 = 0. This is the quasi-electrostatic approximation. Similarly, we can form the
dimensional ratio

‖𝐣𝐷‖2
‖𝐣𝑓 ‖2

∼ 𝜔2

𝑤 (2.1.17)

where ‖𝐣𝐷‖2 corresponds to the displacement current 𝐣𝐷 = 𝚤𝜔𝜖𝐄 and ‖𝐣𝑓 ‖2 to the free current
density. Again, if 𝜔2 ≪ 𝑤 we can ignore the displacement current i.e. we set ∇×𝐇 = 𝐣𝑓 . This
also means a steady current condition ∇ ⋅ 𝐣𝑓 = 0 and from the continuity equation we can
assume 𝜌𝑓 = 0 without loss of generality.

In conducting matter, we can define the electric time constant 𝜏𝐸 = 𝜖/𝜎 and the magnetic
time constant 𝜏𝑀 = 𝜇𝜎𝐿2. The electric time constant is related to the time scale for the
removal of volume charge in conductors. Using these quantities, we can say that quasi-
electrostatics is valid for poor conductors when 𝜔𝜏𝐸 ≫ 1 and quasi-magnetostatics (or eddy
current approximation, see e.g. Rodrıǵuez and Valli [135]) is valid for good conductors when
𝜔𝜏𝐸 ≪ 1, while the general quasi-static approximation is (𝜔𝜏𝐸)(𝜔𝜏𝑀 ) ≪ 1.
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From our discussion so far we can arrive at a general form of the curl-curl Maxwell’s
equation

∇ × (𝜇−1∇ × 𝐄) + 𝜅2𝐄 = 𝐟, (2.1.18)

with 𝐟 = 𝚤𝜔𝐣ext and 𝜅 taking a value depending on the approximation used: 𝜅 = 0 for the static
problem, 𝜅2 = −𝚤𝜔(𝜎 − 𝚤𝜔𝜖) for the general time-harmonic Maxwell’s equations, 𝜅2 = −𝚤𝜔𝜎
for quasi-magnetostatic approximations and 𝜅2 = −𝜔2𝜖 for high-frequency problems.

Quasi-Magnetostatic Approximation in CSEM

In CSEM, we are typically considering the propagation of the electromagnetic field in
a conducting medium. Typical values are 𝜔 ∼ 2𝜋 radm−1, 𝜇 ≈ 4𝜋 × 10−7Hm−1, 𝜖 ≈
8.85 × 10−12 Fm−1, 𝜎 ∼ 1 Sm−1, 𝐿 < 100 km. Substituting these values we get 𝜔𝜏𝜖 ∼ 10−12 ≪
1 and (𝜔𝜏𝐸)(𝜔𝜏𝑀 ) ∼ 10−6 ≪ 1 confirming the general applicability of the quasi-magnetostatic
approximation in CSEM.

2.1.5 Interface and Boundary Conditions

At the interfaces between media with different material properties, we have to consider
boundary conditions for the set of Maxwell equations. Denoting by (−) and (+) the two
media, we have the matching equations

[𝐄] × 𝐧 = 0, (2.1.19a)
[𝐇] × 𝐧 = 𝐣𝑠 , (2.1.19b)
[𝐃] ⋅ 𝐧 = 𝜎𝑠 , (2.1.19c)
[𝐁] ⋅ 𝐧 = 0, (2.1.19d)

where [⋅] denotes the jump across the interface, i.e. [𝐄] = 𝐄+ − 𝐄−, 𝐧 is the unit normal
oriented from (−) to (+) and 𝜎𝑠 , 𝐣𝑠 are external surface current and charge densities respec-
tively. Two commonly used boundary conditions are the perfect electric conductor (PEC)
condition which sets 𝐄 × 𝐧 = 0 and the perfect magnetic conductor (PMC) condition which
sets 𝐇 × 𝐧 = 0.

For an infinite domain, the boundary conditions describe how the field should behave at
infinity, an example being the Sommerfeld radiation condition. If the medium is lossy, it is
sufficient to require that the field decays at infinity. However, for computational purposes, an
infinite domain needs to be truncated and the resulting artificial boundaries can cause non-
physical reflections. The use of an absorbing boundary condition or a perfectlymatched layer
is aimed at reducing the effect of these artificial reflections [123]. A simpler approach for
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lossy media is to employ the Dirichlet PEC condition with a sufficiently large computational
domain. This is a viable choice for the CSEM models considered in this thesis which consist
of conducting media and can be justified if one considers the decay of the EM field in a
conductive medium. As an example, a plane wave in the quasi-magnetostatic approximation
can be described as 𝐄 = 𝐄0 exp(𝚤𝑘𝐱 ⋅ 𝐝), where 𝑘 = (1 + 𝚤)(𝜔𝜇𝜎/2)1/2, with 𝐄0 being the
polarization vector and 𝐝 a unit vector in the direction of the propagation so that 𝐄0 ⋅ 𝑑 = 0.
Therefore, the electric field in this case decays exponentially and requires distance equal to
the skin depth 𝛿 = √2/𝜔𝜇𝜎 to reach 1/𝑒 of its initial value. For example, in typical CSEM
models the skin depth is in the order of hundreds of meters. At distance equal to 5𝛿 , the
retained field is only about 1% and thus no significant artificial reflections will occur when
using a computational domain that has a boundary at least 5𝛿 far away from any sources.
Such a sufficiently large domain together with the PEC condition is a sufficient modelling
choice in most cases of interest.

2.1.6 Representation of Sources and Receivers

In CSEM, the EM fields are generated and measured by electric dipole antennas of length
Δ𝑙. For large enough source-receiver distances, these can be modelled as point dipoles with
Δ𝑙 → 𝑑𝑙 (see Streich and Becken [154] for comparison with finite length dipoles). The
source current density for an ideal, harmonic, electric point dipole with generating current
𝐼 , centred at 𝐱𝑠 and oriented along the 𝐞𝑠 unit direction can be modelled as

𝐣ext = 𝐣𝑠 = 𝐩𝑠 𝛿𝐱𝑠 , (2.1.20)

where 𝐩𝑠 = ‖𝐩𝑠‖2𝐞𝑠 = 𝐼𝑑𝑙𝐞𝑠 is the dipole moment and 𝛿𝐱𝑠 is the Delta distribution centred at
𝐱𝑠 . Similarly, a receiver at 𝐱𝑚 is represented as a point dipole with a fictitious “measurement
current density” 𝐣𝑚 = 𝐞𝑚𝛿𝐱𝑚 .

Such an idealised representation of sources and receivers is convenient but may cause
complications in obtaining a numerical solution due to the presence of singular terms (the
singularities behave like ‖𝑥‖−32 ). From a physics perspective, this corresponds to the fact that
themodel is not strictly speaking valid. The standardway to obtain a solution is to decompose
the total field into a primary field (the fundamental solution given by Green’s distribution)
and a secondary field [134]. The primary field is calculated for a source in a homogeneous or
layered medium for which an analytical solution is known [168]. It is defined as the solution
of the equation

∇ × (𝜇−1∇ × 𝐄𝑝) − 𝚤𝜔𝜎𝑝𝐄𝑝 = 𝚤𝜔𝐣𝑠 , (2.1.21)
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where 𝜎𝑝 is the background conductivity of the homogeneous or layered medium. For a
homogeneous medium the solution is given by

𝐄𝑝 = 𝜔𝜇
4𝜋𝑘

𝑒𝑖𝑘𝑥
𝑥2 ((𝐩𝑠 − (𝐧 ⋅ 𝐩𝑠)𝐧)𝑖𝑘𝑥 + (𝐩𝑠 − 3(𝐧 ⋅ 𝐩𝑠)𝐧) (

1
𝑖𝑘𝑥 − 1)) , (2.1.22)

where 𝑥 = ‖𝐱 −𝐱𝑠‖2, 𝐧 = (𝐱−𝐱𝑠)/𝑥 and 𝑘2 = 𝚤𝜔𝜇𝜎 +𝜔2𝜇𝜖 is the wavenumber which is chosen
so that Re(𝑘) > 0. Solutions for other types of media such as layered earth models are also
available, see e.g. [45]. The total field that is the original unknown is described by

∇ × (𝜇−1∇ × 𝐄) − 𝚤𝜔𝜎𝐄 = 𝚤𝜔𝐣𝑠 . (2.1.23)

Subtracting eq. (2.1.21) from eq. (2.1.23) we get

∇ × (𝜇−1∇ × (𝐄 − 𝐄𝑝)) − 𝚤𝜔𝜎𝐄 + 𝚤𝜔𝜎𝑝𝐄𝑝 = 0. (2.1.24)

We now define the secondary or scattered field as 𝐄𝑠 = 𝐄 − 𝐄𝑝 and the local change in con-
ductivity as 𝛿𝜎 = 𝜎 − 𝜎𝑝 . Equation (2.1.24) becomes

∇ × (𝜇−1∇ × 𝐄𝑠) − 𝚤𝜔𝜎𝐄𝑠 = 𝚤𝜔𝛿𝜎𝐄𝑝 , (2.1.25)

so that we can use the analytical solution for the background medium in the source term and
solve for the secondary field1. This method has the advantage that it avoids any numerical
instabilities associated with singular point or line sources. However, the calculation of the
primary field for e.g. a layered medium can become computationally expensive. Also, the
right hand-side of the resulting linear system is not sparse which can lead to an increased
computational time to obtain solutions. Another consideration in this formulation is how
to model point measurements. Strictly speaking, these make sense only when the primary
and secondary field are both regular enough. While this is true for the primary field away
from the sources (see Rodrıǵuez et al. [134]), the regularity of the secondary field depends
on the regularity of the coefficient parameters 𝜇, 𝜎 and of the domain 𝐷 [4]. Perhaps more
importantly, the treatment of sources andmeasurements is different in this approach, leading
to a violation of reciprocity type theorems. As described later in chapter 4, this is especially
important in primal-dual based model reduction methods, which require solutions of a dual
problem where the measurement operator plays the role of the source. For these reasons, in
this thesis we will resort to a direct representation of point dipole sources and receivers and a
regularisation-based weak formulation, with the accuracy and convergence of the numerical

1Note that it is required to have 𝛿𝜎 = 0 in a region around the source.



2.1 Maxwell Equations 21

solution controlled by varying the mesh size and the support of the regularisation around
the point dipoles.

2.1.7 Variation of Electric Field by Adjoint Method

As described above, the electric field in a domain 𝐷, in the quasi-magnetostatic approxima-
tion, is described by

∇ × (𝜇−1∇ × 𝐄(𝐱)) − 𝚤𝜔𝜎(𝐱)𝐄(𝐱) = 𝚤𝜔𝐣𝑠 , (2.1.26)

together with appropriate boundary conditions. We denote the measurement of the elec-
tric field by an electric dipole receiver with orientation along the unit vector 𝐞𝑚 at position
𝐱𝑚 with 𝐸𝑚(𝐱𝑚). We remind the reader that Maxwell’s equations are symmetric but not
complex-symmetric (Hermitian). The adjoint Maxwell equations can therefore be obtained
by complex conjugation in the frequency domain, which is equivalent to time-reversal in
the time-domain. Using the adjoint equations, we can define the adjoint problem, related to
eq. (2.1.26), in the same medium and domain as

∇ × (𝜇−1∇ × 𝐄adj(𝐱)) + 𝚤𝜔𝜎(𝐱)𝐄adj(𝐱) = −𝚤𝜔𝐣𝑚. (2.1.27)

Equation (2.1.27) describes the adjoint Maxwell equations with a unit source at the receiver
position and orientation along 𝐞𝑚. The reasoning behind this definition is a generalised no-
tion of the Lorentz reciprocity theorem based on a bilinear identity in Lanczos [116]. We
remind the reader that the Lorentz reciprocity theorem relates the field 𝐄 measured at 𝐱𝑚
due to a source 𝐣 at 𝐱𝑠 with the field 𝐄 measured at 𝐱𝑠 due to a source 𝐣 at 𝐱𝑚, provided ap-
propriate boundary conditions have been defined and the medium is described by symmetric
tensor parameters [34, 93]. In the generalised notion of reciprocity, one has not only to in-
terchange source and receiver positions, but also to interchange the original with the adjoint
field, source and receiver orientation and apply complex conjugation. As an example, if the
source dipole is 𝑥-oriented at position 𝐱𝑠 and we measure the field using a 𝑦-oriented dipole
at 𝐱𝑚, then reciprocity would involve measuring the complex conjugate of the adjoint field
using an 𝑥-oriented dipole at 𝐱𝑠 due to a 𝑦-oriented source dipole at position 𝐱𝑚. If appropri-
ate boundary conditions have been defined, then a simplification occurs where the complex
conjugate of the adjoint field can be replaced by the field that solves the primal Maxwell
equations for the source 𝐣𝑚.

If there is a perturbation of the conductivity �̃� = 𝜎 + 𝛿𝜎 , this will lead to a perturbation
of the electric field �̃� = 𝐄 + 𝛿𝐄 such that

∇ × [𝜇−1∇ × (𝐄(𝐱) + 𝛿𝐄(𝐱))] − 𝚤𝜔 [𝜎(𝐱) + 𝛿𝜎(𝐱)] [𝐄(𝐱) + 𝛿𝐄(𝐱)] = 𝚤𝜔𝐣𝑠 . (2.1.28)
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Using eq. (2.1.26), we obtain

∇ × [(𝜇−1∇ × 𝛿𝐄(𝐱)] − 𝚤𝜔𝜎(𝐱)𝛿𝐄(𝐱) = 𝚤𝜔𝛿𝜎(𝐱)�̃�(𝐱), (2.1.29)

which shows that the perturbation is the solution for the source term 𝛿𝜎�̃�. Using the vector
identity ∇ ⋅ (𝐀 × 𝐁) = 𝐁 ⋅ (∇ × 𝐀) − 𝐀 ⋅ (∇ × 𝐁) we form the two equations

∇ ⋅ [(𝜇−1∇ × 𝐄adj) × 𝛿𝐄] = 𝛿𝐄 ⋅ [∇ × (𝜇−1∇ × 𝐄adj)] − 𝜇−1(∇ × 𝐄adj) ⋅ (∇ × 𝛿𝐄), (2.1.30)

∇ ⋅ [(𝜇−1∇ × 𝛿𝐄) × 𝐄adj] = 𝐄adj ⋅ [∇ × (𝜇−1∇ × 𝛿𝐄)] − 𝜇−1(∇ × 𝛿𝐄) ⋅ (∇ × 𝐄adj). (2.1.31)

We subtract, integrate over the whole domain 𝐷 and use the divergence theorem to get

∫𝐷
∇ ⋅ [(𝜇−1∇ × 𝐄adj) × 𝛿𝐄 − (𝜇−1∇ × 𝛿𝐄) × 𝐄adj] 𝑑𝐱, (2.1.32)

=∫𝜕𝐷
[(𝜇−1∇ × 𝐄adj) × 𝛿𝐄 − (𝜇−1∇ × 𝛿𝐄) × 𝐄adj] ⋅ 𝐧 𝑑𝑠. (2.1.33)

The last quantity on the right hand-side is zero if appropriate boundary conditions have
been chosen (e.g. PEC conditions). Then we use the complex conjugate of eq. (2.1.27) and
eq. (2.1.29) to substitute in eq. (2.1.32), so that we get

∫𝐷
𝛿𝐄(𝐱) ⋅ [(𝚤𝜔𝐞𝑚𝛿(𝐱 − 𝐱𝑚) + 𝚤𝜔𝜎(𝐱)𝐄adj(𝐱)] 𝑑𝐱, (2.1.34)

=∫𝐷
𝐄adj(𝐱) ⋅ [𝚤𝜔𝛿𝜎(𝐱) ⋅ �̃�(𝐱) + 𝚤𝜔𝜎𝛿𝐄(𝐱)] 𝑑𝐱, (2.1.35)

which leads to the variation of the electric field due to the perturbation of conductivity

𝛿𝐸𝑚(𝐱𝑚) = 𝛿𝐄(𝐱𝑚) ⋅ 𝐞𝑚 = ∫𝐷
𝐄adj(𝐱) ⋅ 𝛿𝜎(𝐱) ⋅ �̃�(𝐱) 𝑑𝐱. (2.1.36)

From the last expression, using an expansion of �̃� in terms of 𝛿𝜎 , we can identify the first
order functional derivative 𝛿𝐸𝑚(𝐱𝑚)

𝛿𝜎(𝐱) ∶= 𝐄adj(𝐱) ⋅ 𝐄(𝐱). (2.1.37)

From eq. (2.1.36) it is easy to see that if the domain 𝐷 is discretised into 𝑛𝑐 cells 𝑐𝑗 and 𝜎 is
expanded in terms of the characteristic basis function 𝜒𝑗 in each cell as 𝜎 = ∑𝑛𝑐

𝑗 𝜎𝑗𝜒𝑗 , then
assuming a total number of 𝑛𝑟 receivers, the (𝑖, 𝑗) entry of the Jacobian matrix 𝐽 ∈ ℂ𝑛𝑟×𝑛𝑐 of
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the forward map 𝒢 is given by

𝐽𝑖𝑗 =
𝛿𝐸𝑚𝑖 (𝑥𝑚𝑖 )

𝛿𝜎𝑗
= ∫𝑐𝑗

𝐄adj
𝑖 (𝐱) ⋅ 𝐄(𝐱) 𝑑𝐱, 𝑖 = 1, … , 𝑛𝑟 , 𝑗 = 1, = … , 𝑛𝑐 , (2.1.38)

where 𝐄adj
𝑖 is the adjoint field corresponding to the 𝑖-th receiver. The calculation of the Ja-

cobian using the adjoint method as in eq. (2.1.38) takes 𝑛𝑟 + 1 forward evaluations, which
is more efficient than the 𝑛𝑐 + 1 evaluations required in a direct approach, since typically
𝑛𝑐 ≫ 𝑛𝑟 .

2.2 Weak Formulation

Weare interested in obtaining aweak or variational formulation for the time-harmonic, quasi-
magnetostatic Maxwell equations (see the monographs Kirsch and Hettlich [115] and Monk
[123] for a thorough analysis)

∇ × (𝜇−1(𝐱)∇ × 𝐄(𝐱)) − 𝚤𝜔𝜎(𝐱)𝐄(𝐱) = 𝚤𝜔𝐣ext(𝐱), 𝐱 ∈ 𝐷, (2.2.1)

subject to PEC boundary conditions

𝐄(𝐱) × 𝐧(𝐱) = 0, 𝐱 ∈ 𝜕𝐷. (2.2.2)

We assume that 𝜎 ∈ 𝐿∞(𝐷, ℝ) and 𝜇−1 ∈ 𝑊 1,∞(𝐷, ℝ) with

0 < 𝜎min = ess inf𝐱∈𝐷 𝜎(𝐱) ≤ ess sup
𝐱∈𝐷

𝜎(𝐱) = 𝜎max < ∞, (2.2.3)

and
0 < 𝜇min = ess inf𝐱∈𝐷 𝜇(𝐱) ≤ ess sup

𝐱∈𝐷
𝜇(𝐱) = 𝜇max < ∞. (2.2.4)

A formula that is needed is the following variant of Green’s formula which can be obtained
by applying the divergence theorem to (𝐮 × 𝐰)

∫𝐷
(∇ × 𝐮) ⋅ 𝐰 𝑑𝑥 = ∫𝐷

𝐮 ⋅ (∇ × 𝐰) 𝑑𝑥 − ∫𝜕𝐷
(𝐮 × 𝐧) ⋅ 𝐰 𝑑𝑠. (2.2.5)
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We first multiply eq. (2.2.1) with the complex conjugate of a test vector function 𝐯 ∈
𝐶∞0 (𝐷, ℂ3) and then integrate over the whole domain

𝚤𝜔 ∫𝐷
𝐣𝑠 ⋅ 𝐯 𝑑𝑥 = ∫𝐷

𝜇−1(∇ × 𝐄) ⋅ (∇ × 𝐯) 𝑑𝑥

+ ∫𝜕𝐷
𝜇−1(∇ × 𝐄) ⋅ (𝐯 × 𝐧) 𝑑𝑠 − 𝚤𝜔 ∫𝐷

𝜎𝐄 ⋅ 𝐯 𝑑𝑥

= ∫𝐷
𝜇−1(∇ × 𝐄) ⋅ (∇ × 𝐯) 𝑑𝑥 − 𝚤𝜔 ∫𝐷

𝜎𝐄 ⋅ 𝐯 𝑑𝑥, (2.2.6)

where we have used eq. (2.2.5) and the PEC boundary condition for 𝐯. Viewing eq. (2.2.6)
to hold in the distributional sense, we define the space 𝑉 = 𝐻0(curl, 𝐷) and introduce the
sesquilinear form 𝑎 ∶ 𝑉 × 𝑉 → ℂ

𝑎(𝐮, 𝐯; 𝜎) = 𝑠(𝐮, 𝐯) − 𝚤𝜔𝑚(𝐮, 𝐯; 𝜎), (2.2.7)

where
𝑠(𝐮, 𝐯) = (𝜇−1∇ × 𝐮, ∇ × 𝐯)𝐿2(𝐷,ℂ3), 𝑚(𝐮, 𝐯; 𝜎) = (𝜎𝐮, 𝐯)𝐿2(𝐷,ℂ3). (2.2.8)

Then the weak formulation becomes: find 𝐄 ∈ 𝑉 such that

𝑎(𝐄(𝐱), 𝐯(𝐱); 𝜎(𝐱)) = 𝑓 (𝐯(𝐱)), ∀ 𝐯 ∈ 𝑉 , (2.2.9)

where 𝑓 = 𝚤𝜔𝐣ext ∶ 𝑉 → ℂ is in general an antilinear functional, i.e. an element of 𝑉 ∗, the
antidual of 𝑉 . Note that the sesquilinear in eq. (2.2.7) defines a unique 𝐴(𝜎) ∈ 𝐿(𝑉 , 𝑉 ∗) as
𝑎(𝐮, 𝐯; 𝜎) = 𝑉 ∗⟨𝐴𝐮, 𝐯⟩𝑉 ∀𝐮, 𝐯 ∈ 𝑉 .

Proposition 2.2.1. The sesquilinear form in eq. (2.2.7) is continuous on 𝐻(curl, 𝐷)×𝐻(curl, 𝐷),
with continuity constant 𝛾 = max(𝜇−1min, 𝜔𝜎max).

Proof. Using ‖ ⋅ ‖ to denote the 𝐿2(𝐷, ℂ3) norm,

|𝑎(𝐮, 𝐯; 𝜎)| ≤ |(𝜇−1∇ × 𝐮, ∇ × 𝐯)| + |𝚤𝜔| |(𝜎𝐮, 𝐯)| (2.2.10)
≤ ‖𝜇−1‖𝐿∞(𝐷)‖∇ × 𝐮‖‖∇ × 𝐯‖ + 𝜔‖𝜎‖𝐿∞(𝐷)‖𝐮‖‖𝐯‖ (2.2.11)
≤ max(𝜇−1min, 𝜔𝜎max)(‖∇ × 𝐮‖‖∇ × 𝐯‖ + ‖𝐮‖‖𝐯‖) (2.2.12)
≤ 𝛾(‖∇ × 𝐮‖2 + ‖𝐮‖2)1/2(‖∇ × 𝐯‖2 + ‖𝐯‖2)1/2 (2.2.13)
≤ 𝛾‖𝐮‖𝐻(curl,𝐷)‖𝐯‖𝐻(curl,𝐷). (2.2.14)
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Proposition 2.2.2. The sesquilinear form in eq. (2.2.7) is coercive on𝐻(curl, 𝐷), with coercivity
constant 𝛼 = 1/|𝜁 |, where 𝜁 = 𝜇max + 𝚤 1

𝜔𝜎min
and |𝜁 | > 0.

Proof. Using ‖ ⋅ ‖ to denote the 𝐿2(𝐷, ℂ3) norm,

|𝜁 ||𝑎(𝐮, 𝐮; 𝜎)| ≥ |Re(𝜁 𝑎(𝐮, 𝐮; 𝜎))| ≥ Re(𝜁 𝑎(𝐮, 𝐮; 𝜎)) (2.2.15)
= Re(𝜁 )‖∇ × 𝐮‖2𝜇−1 + Im(𝜁 )𝜔‖𝐮‖2𝜎 (2.2.16)

≥ min (ess inf𝐱∈𝐷 (Re(𝜁 )𝜇−1), 𝜔 ess inf𝐱∈𝐷 (Im(𝜁 )𝜎)) (‖∇ × 𝐮‖2 + ‖𝐮‖2) (2.2.17)

= ‖𝐮‖2𝐻(curl,𝐷). (2.2.18)

Corollary 2.2.1. Since the sesquilinear form is continuous and coercive from propositions 2.2.1
and 2.2.2, the requirements of the Lax-Milgram lemma (see e.g. Sauter and Schwab [140]) are
satisfied and therefore the weak problem eq. (2.2.9) has a unique solution for any 𝑓 ∈ 𝑉 ∗ that
obeys the bound

‖𝐄‖𝑉 ≤ 1
𝛼 ‖𝑓 ‖𝑉 ∗ , (2.2.19)

where 𝛼 is the coercivity constant and

‖𝑓 ‖𝑉 ∗ = sup
𝐯∈𝑉 \{0}

|𝑓 (𝐯)|
‖𝐯‖𝑉

, (2.2.20)

is the dual norm of 𝑓 .
From the continuity and coercivity of the sesquilinear form we have that the associated

operator 𝐴 has a bounded condition number 𝜅(𝐴) = ‖𝐴‖𝑉→𝑉 ∗‖𝐴−1‖𝑉 ∗→𝑉 ≤ 𝛾/𝛼 . Having
acquired a solution to eq. (2.2.9), we can also define an output linear functional 𝑠 = 𝑠(𝐄) ∈
𝑉 ′, with 𝑉 ′ the dual space of linear bounded functionals on 𝑉 , that represents e.g. the
measurement operation as 𝑠 = 𝒪 .

Proposition 2.2.3. Suppose for two conductivities 𝜎 and �̃� , that satisfy eq. (2.2.3), we have
the corresponding solutions 𝐄 and �̃� of the weak problem eq. (2.2.9), possibly having differ-
ent coercivity constants 𝛼, �̃� . Then the two solutions obey the perturbation bound ‖𝐄 − �̃�‖𝑉 ≤
𝜔‖𝑓 ‖𝑉 ∗

min(𝛼,�̃�)2 ‖𝜎 − �̃�‖𝐿∞(𝐷).
Proof. Subtracting the two solutions of eq. (2.2.9), we get

𝑎(𝐄, 𝐯; 𝜎) − 𝑎(�̃�, 𝐯; �̃� ) = 0, (2.2.21)
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which gives
𝑎(𝐄 − �̃�, 𝐯; 𝜎) = 𝑙(𝐯) = 𝚤𝜔 ∫𝐷

(𝜎 − �̃�)�̃� ⋅ 𝐯 𝑑𝐱. (2.2.22)

Therefore

‖𝐄 − �̃�‖𝑉 ≤ 1
𝛼 ‖𝑙‖𝑉 ∗ ≤ 𝜔

𝛼 ‖𝜎 − �̃�‖𝐿∞(𝐷)‖�̃�‖𝑉 ≤ 𝜔‖𝑓 ‖𝑉 ∗

min(𝛼, �̃�)2 ‖𝜎 − �̃�‖𝐿∞(𝐷). (2.2.23)

Proposition 2.2.4. The parameter-to-solution map 𝐄 ∶ 𝜎 → 𝐄(𝜎) is holomorphic, i.e. Fréchet
differentiable for complex 𝜎 , with domain of holomorphicity 𝑋 = {𝜎 ∈ 𝐿∞(𝐷; ℂ) ∶ Re(𝜎) > 0}.
The Fréchet differential 𝑑𝐄(𝜎)ℎ ∈ 𝑉 for ℎ ∈ 𝐿(𝐷; ℂ) such that 𝜎 +ℎ ∈ 𝑋 is given by the solution
𝐳 = 𝐳(ℎ) ∈ 𝑉 of

𝑎(𝐳, 𝐯; 𝜎) = 𝚤𝜔 ∫𝐷
ℎ𝐄(𝜎) ⋅ 𝐯 𝑑𝑥, ∀𝐯 ∈ 𝑉 . (2.2.24)

Proof. We follow Cohen and DeVore [53]. If we extend the definition domain of the conduc-
tivity to the complex domain 𝑋 = {𝜎 ∈ 𝐿∞(𝐷; ℂ)}, such that 𝜎 = 𝜎𝑟 + 𝚤𝜎𝑖 , the continuity of
the sesquilinear form 𝑎(⋅, ⋅) is derived as in proposition 2.2.1 with 𝜎max = ess sup

𝐱∈𝐷
|𝜎(𝐱)| < ∞

and continuity constant 𝛾 = max(𝜇−1min, 𝜔𝜎max). Furthermore, for 𝜎𝑟 > 0, we have that for
𝜁 ∈ ℂ with |𝜁 | > 0,

|𝜁 ||𝑎(𝐮, 𝐮)| ≥ |Re(𝑚𝑎(𝐮, 𝐮))| ≥ Re(𝑚𝑎(𝐮, 𝐮)) (2.2.25)

= Re(𝜁 )(‖∇ × 𝐮‖2𝜇−1𝑟 ) + 𝜔 ∫𝐷
(Re(𝜁 )𝜎𝑖 + Im(𝜁 )𝜎𝑟 )𝐮 ⋅ 𝐮 𝑑𝑥 (2.2.26)

≥ min {ess inf𝑥∈𝐷 (Re(𝜁 )𝜇−1𝑟 ), 𝜔 ess inf𝑥∈𝐷 (Re(𝜁 )𝜎𝑖) + 𝜔 ess inf𝑥∈𝐷 (Im(𝜁 )𝜎𝑟 )} (‖∇ × 𝐮‖2 + ‖𝐮‖2)
(2.2.27)

= ‖𝐮‖2𝑉 , (2.2.28)

where we have chosen Re(𝜁 ) = 𝜇max and Im(𝜁 ) = 𝜇max−𝜔𝜇max inf 𝜎𝑖
𝜔 inf 𝜎𝑟𝜇max

. Therefore, the sesquilinear
form is coercive with coercivity constant 𝛼 = 1/|𝜁 | and due to the Lax-Milgram lemma we
can extend the solution map to the complex domain 𝑋 = {𝜎 ∈ 𝐿∞(𝐷; ℂ) ∶ 𝜎𝑟 > 0}. Define
ℎ ∈ 𝐿∞(𝐷; ℂ) such that we also have 𝜎 + ℎ ∈ 𝑋 for 𝜎 ∈ 𝑋 . Then we get

𝑎(𝐄(𝜎 + ℎ), 𝐯; 𝜎 + ℎ) − 𝛼(𝐄(𝜎), 𝐯; 𝜎) = 0, (2.2.29)
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which gives

(𝜇−1𝑟 ∇ × (𝐄(𝜎 + ℎ) − 𝐄(𝜎)), ∇ × 𝐯)𝐿2(𝐷,ℂ3) − 𝚤𝜔(𝜎(𝐄(𝜎 + ℎ) − 𝐄(𝜎), 𝐯)𝐿2(𝐷,ℂ3) (2.2.30)
= 𝚤𝜔(ℎ𝐄(𝜎 + ℎ), 𝐯)𝐿2(𝐷,ℂ3). (2.2.31)

Now pick 𝐯 = 𝐰 = 𝐄(𝜎 +ℎ) −𝐄(𝜎) to get 𝛼(𝐰,𝐰) = 𝚤𝜔(ℎ𝐄(𝜎 +ℎ), 𝐰)𝐿2(𝐷,ℂ3). From coercivity
we have

‖𝐰‖2𝑉 ≤ |𝜁 ||𝛼(𝐰,𝐰; 𝜎)| = |𝜁 ||𝚤𝜔(ℎ𝐄(𝜎 + ℎ),𝐰)𝐿2(𝐷,ℂ3)| (2.2.32)
≤ 𝜔|𝜁 |‖ℎ‖𝐿∞(𝐷,ℂ)‖𝐄(𝜎 + ℎ)‖‖𝐰‖ (2.2.33)
≤ 𝜔|𝜁 |‖ℎ‖𝐿∞(𝐷,ℂ)(‖𝐄(𝜎 + ℎ)‖‖𝐰‖ + ‖∇ × 𝐄(𝜎 + ℎ)‖‖∇ × 𝐰‖) (2.2.34)
≤ 𝜔|𝜁 |‖ℎ‖𝐿∞(𝐷,ℂ)‖𝐄(𝜎 + ℎ)‖𝑉 ‖𝐰‖𝑉 (2.2.35)
≤ 𝜔|𝜁 |‖ℎ‖𝐿∞(𝐷,ℂ)‖𝑓 ‖𝑋 ∗ |𝜁 |‖𝐰‖, (2.2.36)

so that we get
‖𝐄(𝜎 + ℎ) − 𝐄(𝜎)‖𝑉 ≤ 𝐶‖ℎ‖𝐿∞(𝐷,ℂ), 𝐶 = 𝜔‖𝑓 ‖𝑉 ∗ |𝜁 |2. (2.2.37)

We can now define the Fréchet differential 𝑑𝐄(𝜎)ℎ ∈ 𝑉 as the solution 𝐳 = 𝐳(ℎ) ∈ 𝑉 of

𝑎(𝐳, 𝐯; 𝜎) = 𝚤𝜔 ∫𝐷
ℎ𝐄(𝜎) ⋅ 𝐯 𝑑𝑥, ∀𝐯 ∈ 𝑉 , (2.2.38)

which exists and is unique according to the Lax-Milgram lemma since the right hand side is a
bounded anti-linear functional in 𝑉 ∗. Note that 𝐳 depends linearly on ℎ as required. All that
is needed now for Fréchet diffentiability is to show that ‖𝐄(𝜎 + ℎ) − 𝐄(𝜎) − 𝑑𝐄(𝜎)ℎ‖𝑉 = 𝑜(ℎ).
To this purpose, we can see that the remainder 𝐠 = 𝐄(𝜎 + ℎ) − 𝐄(𝜎) − 𝐳 = 𝐰− 𝐳 is the solution
to

𝑎(𝐠, 𝐯; 𝜎) = 𝚤𝜔 ∫𝐷
ℎ(𝐄(𝜎 + ℎ) − 𝐄(𝜎)) ⋅ 𝐯 𝑑𝑥, ∀𝐯 ∈ 𝑉 . (2.2.39)

Taking 𝐯 = 𝐠, we get 𝛼(𝐠, 𝐠; 𝜎) = 𝚤𝜔(ℎ𝐰, 𝐠)𝐿2(𝐷,ℂ3). Then using coercivity and eq. (2.2.37) we
get

‖𝐠‖2𝑉 ≤ |𝜁 ||𝛼(𝐠, 𝐠; 𝜎)| = |𝜁 ||𝚤𝜔(ℎ𝐰, 𝐠)𝐿2(𝐷,ℂ3)| (2.2.40)
≤ 𝜔|𝜁 |‖ℎ‖𝐿∞(𝐷,ℂ)‖𝐰‖‖𝐠‖ (2.2.41)
≤ 𝜔|𝜁 |‖ℎ‖𝐿∞(𝐷,ℂ)‖𝐰‖𝑉 ‖𝐠‖𝑉 (2.2.42)
≤ 𝜔|𝜁 |‖ℎ‖𝐿∞(𝐷,ℂ)(𝐶‖ℎ‖𝐿∞(𝐷,ℂ)‖𝐠‖𝑉 ), (2.2.43)
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giving finally
‖𝐠‖𝑉 ≤ 𝐶|𝜁 |‖ℎ‖2𝐿∞(𝐷,ℂ), (2.2.44)

confirming the order of convergence and thus the Fréchet differentiability of the solution
map. We use the notation 𝑑𝐄(𝜎) ∈ 𝐿(𝑋 , 𝑉 ) to denote the Fréchet derivative at 𝜎 ∈ 𝑋 .

2.2.1 Regularisation of Point Dipole Sources and Receivers

We now would like to consider a current source that is modelled as a point dipole at source
position 𝐱𝑠 , defined by

𝐣𝑠(𝐯) = (𝐩𝑠 , 𝛿𝐱𝑠 (𝐯)) = (𝐩𝑠 , 𝐯(𝐱𝑠)), ∀ 𝐯 ∈ 𝐶∞0 (𝐷, ℂ3), (2.2.45)

In a symmetrical manner, we model measurements of the electric field by a point dipole
sensor, at position 𝐱𝑚 ≠ 𝐱𝑠 , as

𝐸𝑚(𝐱𝑚) = 𝐣𝑚(𝐄) = (𝛿𝑥𝑚(𝐄), 𝐞𝑚), 𝐄 ∈ 𝐶∞0 (𝐷, ℂ3). (2.2.46)

For our choice of point dipole source, we have that 𝐣𝑠 ∉ 𝑉 ∗ in three dimensions. To overcome
this issue, we employ a regularisation of the Dirac delta distribution using the methodol-
ogy that was suggested in Hosseini et al. [103]. Since 𝐶∞0 (𝐷, ℂ3) is dense in 𝑉 , we have the
Gelfand triple 𝐶∞0 (𝐷, ℂ3) ⊂ 𝑉 ≅ 𝑉 ∗ ⊂ 𝐶∞0 (𝐷, ℂ3)∗ (see e.g. Brezis [29]), we construct regular-
isations �̃�𝐻 ∈ 𝑉 ∗ of 𝐣𝑠 , with �̃�𝐻 → 𝐣𝑠 as the parameter 𝐻 → 0 in the weak-∗ topology and we
take 𝑓 = 𝑖𝜔�̃�𝐻 . In particular, we define the regularisation as

�̃�𝐻 (𝐯) = (𝐣𝐻 , 𝐯)𝐿2(𝐷,ℂ3) ∀ 𝐯 ∈ 𝑉 , (2.2.47)

where 𝐣𝐻 ∈ 𝑉 is a compactly supported function within a ball 𝐵(𝐱𝑠 , 𝐻 ) of radius 𝐻 with
centre at 𝐱𝑠 . Then, since �̃�𝐻 ∈ 𝐶∞0 (𝐷, ℂ3)∗, weak-∗ convergence means

�̃�𝐻 (𝐯) → 𝐣𝑠(𝐯) = (𝐞𝑠 , 𝐯(𝐱𝑠))ℂ3 , ∀ 𝐯 ∈ 𝐶∞0 (𝐷, ℂ3) as 𝐻 → 0, (2.2.48)

where we assumed ‖𝐩𝑠‖2 = 1. We follow Hosseini et al. [103], to show the order of conver-
gence in our case where the functions are vector-valued. Due to continuity, given 𝜖 > 0 and
𝑚 ∈ ℕ, there is an 𝑟 > 0 such that ‖𝜕𝜇𝐯(𝐱)−𝜕𝜇𝐯(𝐱𝑠)‖ℂ3 < 𝜖 for all ‖𝐱−𝐱𝑠‖2 < 𝑟 and |𝜇| ≤ 𝑚+1.
Then, the𝑚-th order Taylor expansion for 𝐯(𝐱) in a ball of radius 𝑟 around the point 𝐱𝑠 gives
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[30]

𝐯(𝐱) = 𝐯(𝐱𝑠) + ∑
1≤|𝜇|≤𝑚

1
𝜇!𝜕

𝜇𝐯(𝐱𝑠)(𝐱 − 𝐱𝑠)𝜇 + ∑
|𝜇|=𝑚+1

𝐑𝜇(𝐱; 𝐱𝑠)(𝐱 − 𝐱𝑠)𝜇 , (2.2.49)

where we used multi-index notation and

𝐑𝜇(𝐱; 𝐱𝑠) =
|𝜇|
𝜇! ∫

1

0
(1 − 𝑡)|𝜇|−1𝜕𝜇𝐯 (𝐱𝑠 + 𝑡(𝐱 − 𝐱𝑠)) 𝑑𝑡, (2.2.50)

with a bound given by

|𝑅𝑖𝜇(𝐱; 𝐱𝑠)| ≤
1
𝜇! max

𝑡∈[0,1]
|𝜕𝜇𝑣𝑖 (𝐱𝑠 + 𝑡(𝐱 − 𝐱𝑠)) |, (2.2.51)

for each component in the standard basis in ℂ3. We obtain from eq. (2.2.47)

�̃�𝐻 (𝐯) = (𝐣𝐻 , 𝐯(𝐱𝑠))𝐿2(𝐷,ℂ3) + ∑
1≤|𝜇|≤𝑚

1
𝜇! (𝐣𝐻 , 𝜕

𝜇𝐯(𝐱𝑠)(𝐱 − 𝐱𝑠)𝜇)𝐿2(𝐷,ℂ3)

+ (𝐣𝐻 , ∑
|𝜇|=𝑚+1

𝐑𝜇(𝐱; 𝐱𝑠)(𝐱 − 𝐱𝑠)𝜇)
𝐿2(𝐷,ℂ3)

(2.2.52)

Using eq. (2.2.48), we get

|𝐣𝑠(𝐯) − �̃�𝐻 (𝐯)| = ||(𝐞𝑠 , 𝐯(𝐱𝑠))ℂ3 − (𝐣𝐻 , 𝐯)𝐿2(𝐷,ℂ3)|| =
|||(𝐞𝑠 , 𝐯(𝐱𝑠))ℂ3 − ((𝐣𝐻 , 𝜒𝐷)𝐿2(𝐷), 𝐯(𝐱𝑠))ℂ3

− ∑
1≤|𝜇|≤𝑚

1
𝜇! ((𝐣𝐻 , (𝐱 − 𝐱𝑠)𝜇)𝐿2(𝐷) , 𝜕𝜇𝐯(𝐱𝑠))ℂ3 − ∑

|𝜇|=𝑚+1
(𝐣𝐻 , 𝐑𝜇(𝐱; 𝐱𝑠)(𝐱 − 𝐱𝑠)𝜇)𝐿2(𝐷,ℂ3)

|||

≤
||||
(𝐞𝑠 − (𝐣𝐻 , 𝜒𝐷)𝐿2(𝐷), 𝐯(𝐱𝑠))ℂ3 − ∑

1≤|𝜇|≤𝑚

1
𝜇! ((𝐣𝐻 , (𝐱 − 𝐱𝑠)𝜇)𝐿2(𝐷) , 𝜕𝜇𝐯(𝐱𝑠))ℂ3

||||

+
||||
∑

|𝜇|=𝑚+1
(𝐣𝐻 , 𝐑𝜇(𝐱; 𝐱𝑠)(𝐱 − 𝐱𝑠)𝜇)𝐿2(𝐷,ℂ3)

||||
. (2.2.53)

If we choose a regularisation 𝐣𝐻 that is compactly supported in a ball 𝐵 of radius 𝐻 with
0 < 𝐻 < 𝑟 , such that the following compact 𝑚-moment conditions are satisfied

(𝐣𝐻 , 𝜒𝐷)𝐿2(𝐷) = 𝐞𝑠 and (𝐣𝐻 , (𝐱 − 𝐱𝐬)𝜇)𝐿2(𝐷) = 𝟎, 1 ≤ |𝜇| ≤ 𝑚, (2.2.54)
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then the weak-∗ convergence is of order 𝑂(𝐻𝑚+1) since from eqs. (2.2.51) and (2.2.53)

|𝐣𝑠(𝐯) − �̃�𝐻 (𝐯)| ≤ ∑
|𝜇|=𝑚+1

(max1≤𝑖≤3 max
𝑥∈𝐵(𝐱𝑠 ,𝐻 )

|𝑅𝑖𝜇(𝐱; 𝐱𝑠)|) ((𝐣𝐻 , (𝐱 − 𝐱𝑠)𝜇)𝐿2(𝐷), 𝟏)ℂ3

≤ (𝑚 + 3
2 ) max

|𝜇|=𝑚+1
max1≤𝑖≤3

1
𝜇! max

‖𝐲−𝐱𝑠‖≤𝑟
|𝜕𝜇𝑣𝑖(𝐲)|√3‖(𝐣𝐻 , (𝐱 − 𝐱𝑠)𝜇)𝐿2(𝐷))‖ℂ3

≤ 𝐶(𝑚, 𝐯)𝐻𝑚+1, (2.2.55)

where in the last step we used the moment conditions and integration by parts, and 𝐶(𝑚, 𝐯)
is a quantity independent of 𝐻 .

In practice, we use an expansion of 𝐣𝐻 in terms of an appropriate basis and then solve
the linear system that is derived from the moment conditions. In the numerical examples,
we make use of a radially symmetric regularisation, based on orthonormal, shifted Leg-
endre polynomials on [0, 1]. For example, for an 𝑥-oriented source and receiver, we set
𝐣𝐻 = ‖𝐩𝑠‖2(𝑗1𝐻 , 0, 0) with

𝑗1𝐻 = {
1
𝐻 3𝜂𝑚,𝑝(𝑟/𝐻) 𝑟 ≤ 𝐻 ,
0 𝑟 > 𝐻 ,

(2.2.56)

where 𝑟 = ‖𝐱−𝐱𝑠‖2 and 𝜂𝑚,𝑝(𝑟) is a polynomial of degree 𝑝 in the ball 𝐵(0, 1) that is expressed
in terms of the shifted Legendre polynomials and satisfies the compact𝑚-moment conditions
together with suitable continuity conditions. In our experiments we use 𝜂2,3(𝑟) = −15(−11 +
42 − 51𝑟2 + 20𝑟3)/2𝜋 , which satisfies the 2-moment conditions and has continuity 𝐶0. Of
course, a major factor is the quadrature error introduced when performing the integration
over the support of the regularised delta distribution. Sincewewant a rule that can accurately
approximate integrals over both mesh cells and balls within these cells, we use Monte-Carlo
integration.

Remark 2.2.1. The study of convergence in weighted Sobolev norms is beyond the scope of
this thesis; we expect that results similar to the case in [103] hold, i.e. the same moment
conditions as eq. (2.2.54) need to be satisfied and the convergence rate suggests that the
support 𝐻 should be chosen to be comparable or smaller to the (local) mesh size ℎ around
the source position.

Pointwise Measurement Regularisation

Pointwise values of solutions to eq. (2.2.9) are rigorously justified only when the solution is
sufficiently regular (see Alberti [4] for conditions), so our measurement model is problematic
in general when applied to the weak formulation. In other words, our requirement that the
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output functional 𝑠 is bounded is not true for point measurements as in eq. (2.2.46). Therefore,
we employ the same regularisation technique as for the source term to obtain a regularised
linear functional �̃�𝐻 ∈ 𝑉 ′ with �̃�𝐻 → 𝐣𝑟 as 𝐻 → 0, defined in this case by

�̃�𝐻 (𝐯) = (𝐯, 𝐬𝐻 )𝐿2(𝐷,ℂ3), ∀ 𝐯 ∈ 𝑉 , (2.2.57)

where 𝐬𝐻 ∈ 𝑉 is a compactly supported function within a ball of radius 𝐻 around 𝐱𝑟 . This
leads to compact moment conditions, similar to eq. (2.2.54). We then set 𝑠 = �̃�𝐻 when we
want to consider pointwise measurements.

2.3 Finite Element Method Approximation

There is a variety of methods to numerically solve the Maxwell equations [106, 138, 150],
including the Finite Element Method (FEM) which is based on a variational formulation of
the PDEs, the Finite Difference Time-Domain Method (FDTD) [166] which is based on the di-
rect approximation of the differential operators, the Boundary Element Method (BEM) [140]
which is based on the integral formulation of Maxwell equations, the Finite Integration Tech-
nique (FIT) [50] which can be considered as a generalisation of FDTD and hybrid methods
such as FEM/BEM. Different disctinctions can bemade such as PDE or integral formmethods,
time-domain or frequency-domain methods, linear or higher-order methods, etc.. The opti-
mal choice of the numerical approximation method depends on many variables such as the
specific application, the available software and hardware resources and the desirable charac-
teristics (convergence, robustness, generality, etc.). We stress the fact that in some cases the
methods are equivalent when viewed under an abstract and general framework. For example,
under the framework of differential geometry, FIT can be interpreted using discrete Hodge
operators and regarded as a Galerkin FEM method with perturbed mass matrices (Hiptmair
[101, p. 3.3], Demenko et al. [65]).

In this thesis we choose to use the Galerkin Finite Element Method mainly due to four
factors: the well-studied properties of the method, its generality and applicability to complex
geometries with e.g. complex topography of the sea-floor, its applicability to highly inhomo-
geneous material regions and the fact that it is an established method in CSEM [85, 119, 132,
148]. An introduction to FEM can be found in Larson and Bengzon [117] while its application
to electromagnetism is described in Jin [106], Monk [123], Rylander et al. [138], and Sheng
and Song [150]. Formally, a finite element is defined as the triplet:

• A polygon 𝐾 ⊂ ℝ𝑑 such as a tetrahedron in 3𝐷.

• A polynomial function space 𝑃 on 𝐾 .
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• A set of 𝑛 = dim(𝑃) linear functionals 𝐿𝑖 on 𝑃 defining the degrees of freedom.

One starts with a discretisation (triangulation) of the computational domain 𝐷 using the
chosen polygons and then applies the finite element method which leads to an algebraic
system of equations that can be solved to obtain the solution. From now on, we assume that
there is a triangulation 𝒯ℎ of the domain 𝐷 consisting of 𝑛𝑐 tetrahedra, with a total of 𝑛𝑒
edges and with size ℎ indicating the maximum diameter2 in 𝒯ℎ. The tetrahedral mesh 𝒯ℎ
can be defined through an affine mapping 𝐹𝐾 from a reference tetrahedron �̂� as shown in
fig. 2.1 using the relation

𝐱 = 𝐹𝐾 (�̂�) = 𝐵𝐾 �̂� + 𝐛𝐾 , (2.3.1)

where 𝐵𝐾 ∈ ℝ3×3 and 𝑏𝐾 ∈ ℝ3.

2.3.1 Nédélec Edge Elements on Tetrahedra

To solve the weak form of the problem using finite elements in 3𝐷, we need to choose the
type of elements. Generally, one uses nodal finite elements which are defined by shape
functions that take their values on the nodes of themesh. However, in electromagnetism, this
can lead to non-physical solutions and a more appropriate choice is the use of the Nédélec
edge elements which are vector-valued. The Nédélec curl-conforming edge elements are an
appropriate choice for the approximation of the space 𝐻(curl, 𝐷) as the continuity of the
tangential components of the electric field is ensured across elements.

The definition of the Nédélec edge element proceeds using the general finite element
construction mentioned above. The approximating polynomial function space on each tetra-
hedron 𝐾 is defined as 𝑅𝑘 = (𝑃𝑘−1)3 ⊕ 𝑆𝑘 with dim(𝑅𝑘) = (𝑘 + 3)(𝑘 + 2)𝑘/2, where 𝑃𝑘 is the
space of polynomials of maximum total degree 𝑘 and 𝑆𝑘 is defined as

𝑆𝑘 = {𝐩 ∈ ( ̃𝑃𝑘)3|𝐱 ⋅ 𝐩 = 0}, (2.3.2)

with ̃𝑃𝑘 being the space of homogeneous polynomials of total degree exactly 𝑘. For the
lowest order edge element with 𝑘 = 1, the degrees of freedom, which are unisolvent in 𝑅1,
are defined on the six edges 𝑒 of 𝐾 as

𝐿𝑒(𝐯) = ∫𝑒
𝐯 ⋅ 𝝉𝑤 𝑑𝑠, ∀𝑤 ∈ 𝑃0(𝑒), (2.3.3)

2The shape and size of a cell 𝐾 ∈ 𝒯ℎ can be described using the parameters ℎ𝐾 = inf𝑏⊇𝐾 diam𝑏 and 𝜌𝐾 =
sup𝑏⊆𝐾 diam𝑏, where 𝑏 is an open ball. Then the mesh size is given by ℎ = max𝐾∈𝒯ℎ ℎ𝐾 and the shape regularity
measure is given by 𝜌(𝒯ℎ) = max𝐾∈𝒯ℎ ℎ𝐾 /𝜌𝐾 .
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where 𝝉 are unit tangents on each edge. Note that 𝑅1 ⊂ (𝑃1)3. An alternative Nédélec
element of second-type spans the full polynomial space at the expense of additional degrees
of freedom [123]. We can define the global Nédélec space of lowest order on a tetrahedral
mesh 𝒯ℎ as

𝑉ℎ = {𝐯 ∈ 𝐻0(curl, 𝐷) ∶ 𝐯|𝐾 = 𝐚 + 𝐛 × 𝐱 ∈ 𝑆1, ∀𝐾 ∈ 𝒯ℎ, 𝐚, 𝐛 ∈ ℂ3}, (2.3.4)

where the coefficients 𝐚 and 𝐛 are determined by the degrees of freedom on the edges. The
global basis functions 𝐍𝑖 , 𝑖 = 1, … , 𝑛𝑒 for 𝑉ℎ (which have compact support as each 𝐍𝑖 is
non-zero only in the tetrahedra that share the associated edge 𝑖) can be derived using an
appropriate transformation of the local basis functions �̂�𝑖 , 𝑖 = 1, … , 6 defined on a reference
tetrahedron �̂� . These are determined by requiring that 𝐿𝑖(�̂�𝑗) = 𝛿𝑖,𝑗 . For example, a basis for
the lowest order edge elements defined on the reference tetrahedron is given by

�̂�1 = ̂𝜙1∇̂ ̂𝜙2 − ̂𝜙2∇̂ ̂𝜙1, (2.3.5a)

�̂�2 = ̂𝜙1∇̂ ̂𝜙3 − ̂𝜙3∇̂ ̂𝜙1, (2.3.5b)

�̂�3 = ̂𝜙1∇̂ ̂𝜙4 − ̂𝜙4∇̂ ̂𝜙1, (2.3.5c)

�̂�4 = ̂𝜙2∇̂ ̂𝜙3 − ̂𝜙3∇̂ ̂𝜙2, (2.3.5d)

�̂�5 = ̂𝜙2∇̂ ̂𝜙4 − ̂𝜙4∇̂ ̂𝜙2, (2.3.5e)

�̂�6 = ̂𝜙3∇̂ ̂𝜙4 − ̂𝜙4∇̂ ̂𝜙3, (2.3.5f)

where ̂𝜙𝑖 are the nodal basis functions on the reference tetrahedron defined as

̂𝜙1 = 1 − �̂� − �̂� − ̂𝑧, ̂𝜙2 = �̂�, ̂𝜙3 = �̂�, ̂𝜙4 = ̂𝑧. (2.3.6)

For the transformation of the basis functions, one has to use the Piola mappings [136] to
ensure that the traces between spaces are preserved. The covariant Piola mapping 𝑃𝐾 is the
appropriate transformation for 𝐻(curl; 𝐷) defined by

𝐍𝑖(𝐱) = 𝑃𝐾 (�̂�𝑖)(𝐱) = 𝐵−𝑇𝐾 (�̂�𝑖 ∘ 𝐹−1𝐾 )(𝐱). (2.3.7)

The curl of the basis functions is then obtained through the contravariant Piola mapping
which is the appropriate transformation for 𝐻(div; 𝐷)

∇ × 𝐍𝑖 =
1

det𝐵𝐾
𝐵𝐾 (∇ × �̂�𝑖 ∘ 𝐹−1𝐾 ). (2.3.8)
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Fig. 2.1 Reference tetrahedron with numbering of nodes 1 = (0, 0, 0), 2 = (1, 0, 0), 3 = (0, 1, 0),
4 = (0, 0, 1) and oriented edges.

Figure 2.2 shows the six basis functions for a reference tetrahedron in 3D. Note that the
basis functions 𝐍𝑖 are divergence-free in each element 𝐾 but that doesn’t mean that they
have zero divergence in all of the domain, as their normal component isn’t continuous across
tetrahedra faces.

2.3.2 FEM approximation

The Galerkin FEM approximation using the space 𝑉ℎ becomes: find 𝐄ℎ ∈ 𝑉ℎ such that
eq. (2.2.9) holds ∀𝝂 ∈ 𝑉ℎ. The problem is well posed since 𝑉ℎ ⊂ 𝑉 so that the conditions
of the Lax-Milgram lemma are satisfied with coercivity constant 𝛼ℎ > 𝛼 and continuity con-
stant 𝛾ℎ < 𝛾 .

The FEM approximation 𝐄ℎ satisfies an a priori convergence estimate given by Cea’s
lemma [140]

Corollary 2.3.1. The Galerkin FEM approximation 𝐄ℎ ∈ 𝑉ℎ ⊂ 𝑉 obeys the quasi-optimal
bound

‖𝐄 − 𝐄ℎ‖𝑉 ≤ 𝛾
𝛼 inf𝐯ℎ∈𝑉ℎ

‖𝐄 − 𝐯ℎ‖𝑉 (2.3.9)

A general estimate for the full Maxwell equations in both 𝐿2 and 𝐻(curl) norm is proved
in Zhong et al. [170, Theorem 4.1], which we restate here for reference.

Theorem 2.3.1 (Zhong et al. [170, Theorem 4.1]). Let 𝐷 be a bounded Lipschitz polyhedron
with connected boundary, 𝐄 and 𝐄ℎ the solutions of the weak formulation eq. (2.2.9) in 𝑉 and
the FEM approximation with lowest-order Nédélec edge elements in 𝑉ℎ, respectively. Then there
exists a constant 𝛿 ∈ (0.5, 1], with 𝛿 = 1 for a convex domain, and a constant ℎ0 > 0 independent



2.3 FEM Approximation 35

0.0
0.5

1.0
0.0

0.5

1.0
0.0

0.5

1.0

0.0
0.5

1.0
0.0

0.5

1.0
0.0

0.5

1.0

0.0
0.5

1.0
0.0

0.5

1.0
0.0

0.5

1.0

0.0
0.5

1.0
0.0

0.5

1.0
0.0

0.5

1.0

0.0
0.5

1.0
0.0

0.5

1.0
0.0

0.5

1.0

0.0
0.5

1.0
0.0

0.5

1.0
0.0

0.5

1.0

Fig. 2.2 The six basis functions of the Nédélec lowest order edge element for the reference
tetrahedron in 3𝐷.

of ℎ, 𝐄, 𝐄ℎ, such that for all ℎ < ℎ0, we have

‖𝐄 − 𝐄ℎ‖𝐿2(𝐷,ℂ3) ≤ 𝐶𝐿2 inf𝐯ℎ∈𝑉ℎ
(‖𝐄 − 𝐯ℎ‖𝐿2(𝐷,ℂ3) + ℎ𝛿 ‖∇ × (𝐄 − 𝐯ℎ)‖𝐿2(𝐷,ℂ3)) , (2.3.10)

‖𝐄 − 𝐄ℎ‖𝑉 ≤ 𝐶𝐻(curl) inf𝐯ℎ∈𝑉ℎ
‖𝐄 − 𝐯ℎ‖𝑉 , (2.3.11)

where the constants 𝐶𝐿2 and 𝐶𝐻(curl) depend on 𝐷, the shape-regularity of the triangulation and
the parameters of the PDE 𝜇, 𝜎 , 𝜔, 𝜖.

The general density property limℎ→0 inf𝐯ℎ∈𝑉ℎ ‖𝐯 − 𝐯ℎ‖𝑉 = 0, ∀𝐯 ∈ 𝑉 is implied by the
density of 𝐶∞0 (𝐷, ℂ3) in 𝑉 and the approximability of smooth functions by functions in 𝑉ℎ
as ℎ → 0. This last statement can be made more precise by using the canonical interpolant
𝐼ℎ𝐄 ∈ 𝑉ℎ, which is defined for a sufficiently smooth function 𝐄 ∈ 𝑉 by matching the degrees
of freedom on the edges element by element, i.e. by

𝐼ℎ𝐄 = ∑
𝑒
(∫𝑒

𝐄 ⋅ 𝝉 𝑑𝑠)𝐍𝑒 . (2.3.12)
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We can then use error estimates for the interpolant to estimate the order of convergence of
the FEM approximation. First, for any 𝑟 ≥ 0 we define the function space

𝐻 𝑟 (curl, 𝐷) = {𝐮 ∈ 𝐻 𝑟 (𝐷, ℂ3) ∶ ∇ × 𝐮 ∈ 𝐻 𝑟 (𝐷, ℂ3)}, (2.3.13)

with norm ‖𝐮‖𝐻 𝑟 (curl,𝐷) = (‖𝑢‖2𝐻 𝑟 (𝐷,ℂ3) + ‖∇ × 𝑢‖2𝐻 𝑟 (𝐷,ℂ3))1/2 and where for non-integer 𝑟 the
spaces are defined as fractional Sobolev spaces [29, 123]. The next theorem from [123] gives
an interpolation error estimate

Theorem 2.3.2. (Monk [123, Theorem 5.41]) If 𝒯ℎ is shape-regular3 and 𝐄 ∈ 𝐻 𝑟 (curl, 𝐷) for
1/2 < 𝑟 ≤ 1, then

‖𝐄 − 𝐼ℎ𝐄‖𝑉 ≤ 𝐶ℎ𝑟 ‖𝐄‖𝐻 𝑟 (curl,𝐷). (2.3.14)

Using theorems 2.3.1 and 2.3.2, we have that if 𝐄 ∈ 𝐻 𝑟 (curl; 𝐷) and the triangulation 𝒯ℎ
is shape-regular, then for 1/2 < 𝑟 ≤ 1 and ℎ < ℎ0, ℎ0 > 0, we have

‖𝐄 − 𝐄ℎ‖𝑉 ≤ 𝐶ℎ𝑟 ‖𝐄‖𝐻 𝑟 (curl;𝐷). (2.3.15)

For the 𝐿2 norm, since (𝑃0)3 ⊂ 𝑅1 ⊂ (𝑃1)3, the Bramble-Hilbert lemma [28] gives an order of
convergence𝑂(ℎ) for ‖𝐄−𝐼ℎ𝐄‖𝐿2(𝐷,ℂ3). An optimal order of convergence can be obtained using
instead the second family of edge elements [170]. We mention also that for lower regularity
solutions 𝐄 ∈ 𝐻 𝑟 (curl, 𝐷) and under similar assumptions, the error estimate eq. (2.3.14) is
obtained for 0 < 𝑟 ≤ 1 in Ern and Guermond [70] using quasi-interpolation operators [72]
(see also Ciarlet Jr. [49] for an alternative analysis).

2.3.3 Derivation of Linear System of Equations

Since 𝐄ℎ belongs to 𝑉ℎ we can write it as a linear combination of the basis functions 𝐍𝑗 ,

𝐄ℎ(𝐱) =
𝑛𝑒
∑
𝑗=1

𝜉𝑗𝐍𝑗(𝐱), (2.3.16)

so that finally the finite element problem in its algebraic form is: solve 𝐴𝜉 = 𝑏 to find coeffi-
cients 𝜉𝑗 , where the (𝑛𝑒 ×𝑛𝑒)matrix 𝐴 (abusing notation we denote by 𝐴 both the continuous

3A family of triangulations {𝒯ℎ} is shape-regular if there exists a 𝑐0 > 0, independent of ℎ such that 𝑐𝐾 =
ℎ𝐾 /𝜌𝐾 ≤ 𝑐 for all 𝐾 ∈ 𝒯ℎ where 𝐾 is any cell in the triangulation.
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operator and its discrete counterpart) and the (𝑛𝑒 × 1) source vector 𝑏 are given by

𝐴𝑖𝑗 = 𝑎(𝐍𝑗 , 𝐍𝑖 ; 𝜎) = 𝑆𝑖𝑗 − 𝚤𝜔𝑀𝑖𝑗 , (2.3.17)
𝑆𝑖𝑗 = 𝑠(𝐍𝑗 , 𝐍𝑖), (2.3.18)
𝑀𝑖𝑗 = 𝑚(𝐍𝑗 , 𝐍𝑖 ; 𝜎), (2.3.19)
𝑏𝑖 = 𝚤𝜔𝑓 (𝐍𝑖). (2.3.20)

2.3.4 Quadrature

Using the pull-back of global quantities to local quantities defined on the reference tetrahe-
dron, we can write the integrals for 𝑆𝑖𝑗 and 𝑀𝑖𝑗 as

𝑆𝑖𝑗 = ∫�̂�
𝜇−1 ( 1

det𝐵𝐾
𝐵𝐾 (∇ × �̂�𝑖)) ⋅ (

1
det𝐵𝐾

𝐵𝐾 (∇ × �̂�𝑗)) | det𝐵𝐾 | 𝑑�̂�, (2.3.21)

𝑀𝑖𝑗 = ∫�̂�
𝜅2 (𝐵−𝑇𝐾 �̂�𝑖) ⋅ (𝐵−𝑇𝐾 �̂�𝑗) | det𝐵𝐾 | 𝑑�̂�. (2.3.22)

Using numerical quadrature defined on the reference tetrahedron we can substitute the
integration with a summation over the 𝑁int quadrature points �̂�𝑘 with weights �̂�𝑘 as
∫�̂� ̂𝑓 (�̂�) 𝑑�̂� → ∑𝑁int

𝑘=1 ̂𝑓 (�̂�𝑘)�̂�𝑘 .

2.3.5 Solution of Linear System

The global basis functions have compact support, leading to a sparse, complex matrix 𝐴,
which is symmetric but indefinite and non-Hermitian. The 2-norm condition number 𝜅(𝐴)
of 𝐴 can be bounded using the general analysis in Ern and Guermond [71]. First, note that
‖𝐮‖𝐿2(𝐷,ℂ3) ≤ ‖𝐮‖𝑉 for all 𝐮 ∈ 𝑉 . We also have the inverse inequality ‖∇ × 𝐮ℎ‖𝐿2(𝐷,ℂ3) ≤
𝐶(𝜌(𝒯ℎ))ℎ−1‖𝐮ℎ‖𝐿2(𝐷,ℂ3) for all 𝐮ℎ ∈ 𝑉ℎ and some constant 𝐶 that depends on 𝜌(𝒯ℎ) (see
e.g. Hiptmair [101, Section 3.6]). This gives ‖𝐮ℎ‖𝑉 ≤ �̃�(𝜌(𝒯ℎ))ℎ−1‖𝐮ℎ‖𝐿2(𝐷,ℂ3) for all 𝐮ℎ ∈ 𝑉ℎ,
ℎ < ℎ0 for some sufficiently small ℎ0 and some constant �̃� that depends on 𝜌(𝒯ℎ). Based on
these relations, we can use Ern and Guermond [71, Corollary 3.4] to estimate

𝜅(𝐴) ≤ 𝐾 𝛾ℎ
𝛼ℎ

ℎ3max
ℎ5min

≤ 𝐾 𝛾
𝛼
ℎ3max
ℎ5min

, (2.3.23)

where ℎmin and ℎmax are the minimum and maximum cell sizes respectively and 𝐾 is a con-
stant independent of the mesh size. The estimate in eq. (2.3.23) shows that the bound on the
condition number of 𝐴 is affected by two quantities: the ratio 𝛾/𝛼 and the mesh sizes ℎmin,
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ℎmax. The first factor is determined by the infinite-dimensional variational problem and the
material properties. We can see that 𝛼 → 0 as 𝜎min → 0 or 𝜔 → 0, so that as the conductiv-
ity or frequency becomes very small the weak problem becomes unstable, i.e. the condition
number of the operator 𝐴 becomes large. In such cases, a different weak formulation such
as a mixed formulation might be needed to ensure stability [135]. The second factor depends
on the mesh and is the result of using global basis functions with compact support and of
embedding 𝑉ℎ in Euclidean space (see also the discussion in Kirby [113]).

Classical perturbation analysis for the linear system [100] gives the relative forward error
bound

‖𝜉 − ̂𝜉 ‖2
‖𝜉 ‖2

≤ 2𝜂𝜅(𝐴)
1 − 𝜂𝜅(𝐴), 𝜂𝜅(𝐴) ≤ 1, (2.3.24)

for some 𝜂 > 0, where ̂𝜉 solves the perturbed system (𝐴 +Δ𝐴) ̂𝜉 = 𝑏 + Δ𝑏, with ‖Δ𝐴‖2 ≤ 𝜂‖𝐴‖2
and ‖Δ𝑏‖2 ≤ 𝜂‖𝑏‖2. The condition number also enters in the analysis of the solution of the
linear system by direct or iterative methods. For the direct solution of the system, classical
error analysis shows [100] that LU factorization with partial pivoting is for most practical
matrices stable, with small residuals even for ill-conditioned systems. Specifically for sparse
LU (see e.g. Davis et al. [64] for a general review of sparse direct methods), a theoretical
error analysis framework has been developed in Arioli et al. [10], where it was shown that
iterative refinement can be used in cases where the error is found to be large. Implementa-
tions of sparse LU such as MUMPS [7, 8], include a pre-processing step (scaling and permu-
tation) to improve the numerical accuracy and reduce the fill-in of the factors. In general,
the available direct solver software packages (e.g. MUMPS, PARDISO, MATLAB) are able to
automatically analyse the linear system and provide solutions with sufficiently small error
except in the most pathological cases. With regard to the time and memory complexity of
sparse LU, it depends on the sparsity pattern with a general estimate of 𝑂(𝑛2) and 𝑂(𝑛4/3)
respectively. For problems with a very high number of degrees of freedom, sparse LU solvers
capable of parallel processing can be used. Alternatively, iterative solvers are capable of han-
dling large-scale linear systems. For the complex, symmetric, non-hermitian linear system
at hand, appropriate choices of iterative solvers include Krylov based methods such as the
GMRES, QMR and BiCGStab algorithms [139]. However, due to the indefiniteness and the
ill-conditioning of the system, these methods tend to converge slowly, be unstable or both.
Therefore, preconditioners [161] must be used to improve the properties the system. These
include general preconditioners such as incomplete LU or approaches specifically designed
for the problem at hand based for example on the multigrid, domain-decomposition and aux-
iliary space methods (see e.g. Alonso and Valli [6] and Hiptmair and Xu [102]). Finally,
other numerical schemes for the solution of the linear system include two-grid and multi-
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level methods [125, 169] and methods specifically designed for complex, symmetric systems
(see e.g. Axelsson et al. [13] and references within) which are based on operator splittings or
on the conversion of the system to an equivalent real block form. In the numerical examples
used in this thesis, we employ the sparse LU factorization as implemented in the MUMPS
solver, due to its generality, availability, robustness and most importantly, for the applica-
tion considered here, the fact that LU factorization can be re-used to obtain new solutions
for different right hand-sides and for the solution of the adjoint or dual problems. This latter
advantage can lead to significant computational savings and make the direct approach com-
petitive in computational cost with iterative methods even for large-scale systems. Although
LU factorization is not specifically designed for complex symmetric systems, the symmetry
of the matrix 𝐴 can be exploited in the implementation to reduce the computational cost
roughly by a factor of two. Additionally, the symmetry is also exploited in the solution
of the adjoint or dual problem and the computation of the forward model Jacobian via the
adjoint method as explained in 2.1.7.

Example. We give here a basic example for a linear system that arises in the CSEMmodels
considered in this thesis (see also 5 for the numerical experiments we study). The parameters
in Maxwell equations are set to 𝜇 = 𝜇0, 𝜔 = 2𝜋 and ‖𝐩𝑠‖2 = 50000. The domain is chosen as
𝐷 = (−5000, 5000) × (−5000, 5000) × (−4000, 4000), which is separated into 𝐷+ and 𝐷− by
the horizontal plane 𝑧 = 0. We assume that 𝜎 = 𝜎min = 0.01 in 𝐷−, 𝜎 = 𝜎max = 3.3 in
𝐷+ and there is a single dipole source at (−500, −500, 250). Using a tetrahedral mesh with
𝑛𝑐 = 76128 number of cells, with ℎmin ≈ 134.9, ℎmax ≈ 1387.4, 𝜌(𝒯ℎ) ≈ 12.8 and degrees
of freedom 𝑛𝑒 = 85437, we find that 𝛼 ≈ 0.0628, 𝛼ℎ ≈ 0.0628, 𝛾 ≈ 8 × 105, 𝛾ℎ ≈ 5.6 × 103
and 𝜅(𝐴) ≈ 8.3 × 104. We first solve the system using the sparse LU solver MUMPS and
with double precision arithmetics to obtain the solution 𝜉𝐿𝑈 . The error analysis [10] gives
‖𝐴𝜉𝐿𝑈−𝑏‖∞
‖𝐴‖∞‖𝜉𝐿𝑈 ‖∞

≈ 3.8 × 10−17 for the relative residual and ‖𝜉 − 𝜉𝐿𝑈 ‖∞/‖𝜉 ‖∞ ≤ 2.6 × 10−12 for the
relative forward error. Next we use the biconjugate gradients stabilized method (BiCGStab)
as implemented in MATLAB, with a tolerance set at 10−6. The computed solution does not
reach the required tolerance level even after 1000 iterations, showing that a preconditioner
is required. As a preconditioner for BiCGStab, we use the Crout version of incomplete LU
factorization (ILU) as implemented in MATLAB, with drop tolerance set to 10−4. The solution
in this case converges to the desired tolerance level after 106 iterations.
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2.4 The CSEM Inverse Problem

As mentioned in chapter 1, the inverse problem in CSEM falls into the category of ill-posed
EM inverse problems. Therefore, a generalised Tikhonov regularisation is usually applied to
obtain a well-posed problem with a stable and unique solution4. Given measurement data
𝐝 ∈ ℂ𝐾 , a Banach space 𝑋 where conductivity 𝜎 can take its values, a Frèchet differentiable
forward map𝒢 and a model for the noise 𝜂, a general approach to seek a regularised solution
is to pose the problem as the minimisation of a convex functional [146]

Φ𝑑,𝜂(𝜎) = 𝜌𝑑,𝜂(𝐝, 𝒢 (𝜎)) + 𝛽ℜ(𝜎, 𝜎ref), (2.4.1)

where 𝜌𝑑,𝜂 ∶ ℂ𝐾 × 𝑋 → ℝ is a functional that measures a distance (data misfit) between
the data 𝐝 and forward model predictions 𝒢(𝜎), ℜ ∶ 𝑋 → ℝ is a regularising functional
that imposes additional information such as smoothness of the sought solution, 𝜎ref is a
reference conductivity and 𝛽 > 0 is a parameter that controls the relative importance of 𝜌
and ℜ. Restricting the discussion to the Hilbert space setting, a typical but not unique choice
is the following

Φ𝑑,𝜂(𝜎) =
1
2‖𝑊𝑑(𝐝 − 𝒢 (𝜎))‖22 +

𝛽
2 ‖ℛ(𝜎 − 𝜎ref)‖22, (2.4.2)

where 𝑊𝑑 is a data weighting matrix and ℛ is a regularisation operator. Typically ℛ is a
suitable power of a differential operator such as the Laplacian. The desired effect is to impose
smoothness on the solution, which is a form of prior constraints. Note that this form of the
functional 𝜌 corresponds in the statistical interpretation to an additive Gaussian noise model.

The solution of the non-linear minimisation problem is obtained using suitable optimi-
sation methods such as iterative, derivative-based approaches [109]. For example, denoting
by 𝒢 ′(𝜎) = 𝒪(𝑑𝐄(𝜎)) the Fréchet derivative of the forward map, the iteratively regularised
Gauss-Newton method proceeds by solving at each step the following equation

[Re [(𝑊𝑑𝒢 ′(𝜎))𝐻𝑊𝑑𝒢 ′(𝜎)] + 𝛽ℛ𝐻ℛ]𝛿𝜎 = Re [(𝑊𝑑𝒢 ′(𝜎))𝐻𝑊𝑑(𝐝 − 𝒢 (𝜎))] (2.4.3)
+ 𝛽(𝜎ref − 𝜎), (2.4.4)

and updating the estimate by 𝜎 → 𝜎 + 𝛿𝜎 . A transformation can be applied to 𝜎 such that
an additional constraint or scaling is imposed. An example is to impose positivity by setting
𝜎 = exp(𝑏) and then re-formulate the optimisation problem in terms of the function 𝑏.

4The essential ingredient needed to transform an ill-posed problem to a well-posed is additional information.
Other than regularisation, this can be achieved through the use of e.g. geometric priors.
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The choice of the regularisation parameter 𝛽 has been the topic of research in many publi-
cations. Methods such as the L-curve and the discrepancy principle are classical approaches
that work well for linear inverse problems [92]. Alternatively, heuristic methods have been
the most common choice in CSEM inversions [1, 148]. In our numerical tests, we have found
good results in terms of number of iterations, stability and convergence using a delayed grat-
ification update scheme as proposed in Transtrum et al. [159] for the Levenberg–Marquardt
algorithm. The heuristic scheme proceeds as follows: starting from some choice of 𝛽 , if the
calculated newmisfit at each iteration is smaller than the old misfit, accept the proposed step
and set 𝛽 = 𝛽/𝛽down, otherwise reject the step and set 𝛽 = 𝛽 ⋅𝛽up. The parameters that control
the increase and the decrease of 𝛽 are chosen so that 𝛽up < 𝛽down. The rationale behind this
scheme is that we are trying to approximate the lowest value of 𝛽 that does not produce an
increase in the data misfit.

Computational Issues

One of the challenges in CSEM is the computational cost involved in large-scale model in-
versions [69, 85, 86, 148]. The degrees of freedom in the forward model can be in the order of
millions and the number of data observations in the order of hundreds of thousands. Obvi-
ously, besides the availability of sufficient computational resources, one should use methods
that can scale favourably with the size of the problem and implement these carefully to avoid
prohibitive memory usage and run-time. The main computational bottleneck in solving the
optimisation problem is the calculation of the Jacobian 𝐽 (the discrete representation of 𝒢 ′)
or if one wants to avoid memory issues the calculation of matrix-vector products for 𝐽 𝑥
and 𝐽 ∗𝑥 for some vector 𝑥 . As derived in section 2.1.7, the adjoint method can alleviate the
computational cost involved in these operations, especially when used in conjunction with
a factorisation from a sparse direct solver.

2.5 A CSEM Inversion Example

We give here a basic example reconstruction for a CSEM inverse problem involving a two-
layerwater-earth backgroundmodel and a conductivity anomaly representing a gas reservoir,
shown in fig. 2.3. The synthetic data produced from this model are the 𝑥 , 𝑦 and 𝑧 components
of the electric field as measured by 256 receivers for one frequency 𝑓 = 0.5Hz and 4 sources,
giving in total 3072 data points that are contaminated with 5% Gaussian noise. Using the
iteratively regularised Gauss-Newton method with ℛ = 𝐼 and 𝑊𝑑 = (diag(0.05‖𝐝‖))−1, we
invert for 32940 conductivity cell values. The inversion result after 35 iterations is shown in
fig. 2.4.
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Fig. 2.3 Triangulation of a two-layer earth model consisting of seawater with 𝜎 = 3.3 Sm−1
and sediments with 𝜎 = 1 Sm−1 with a conductivity anomaly of 𝜎 = 0.05𝑆𝑚−1.
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Fig. 2.4 x-slice (top) and z-slice (bottom) of true (left) and reconstructed (right) conductivity
profiles. Reconstruction of 32940 cell conductivity values based on synthetic data contami-
nated with 5% Gaussian noise. The data are the 𝑥 ,𝑦 and 𝑧 components of the electric field as
measured by 256 receivers for one frequency 𝑓 = 0.5Hz and 4 sources. The results are after
35 Gauss-Newton iterations.





Chapter 3

The Probabilistic Model

This chapter starts with an introduction to the concept of random fields and relevant theory
from stochastic processes and probability. Then, the stochastic forward problem is defined
which is subsequently re-cast in a parametric form. Finally, based on the parametric form,
the formulation of forward and inverse UQ is presented.

3.1 Random Fields

In the context of UQ and the probabilistic approach to parameter identification, functions and
fields take the form of random fields [3, 48, 120]. These can be viewed either as realisations
of a vector field or as families of random variables parametrised by elements in a topological
space. For a model that corresponds to a physical system and is described by a PDE, the
random field is spatially correlated, thus exhibiting covariance structure. More precisely, we
have the definitions (mostly based on Lord et al. [120])

Definition 3.1.1. For a domain 𝐷 ⊂ ℝ𝑑 , a vector space 𝒱 and a probability space (Θ,ℱ , ℙ),
a random field {𝑢(𝐱, 𝜃), 𝐱 ∈ 𝐷, 𝜃 ∈ Θ} is a measurable mapping 𝑢 ∶ 𝐷×Θ → 𝒱 . The random
field can be viewed as a collection of 𝒱 -valued random variables 𝑢(𝐱, ⋅) for each 𝐱 ∈ 𝐷 or as
a vector field 𝑢(⋅, 𝜃) for each 𝜃 ∈ Θ. In the latter case we talk about the realisations of the
random field.

Definition 3.1.2. The expectation or mean of a random field 𝑢(𝐱, 𝜃) is

𝔼[𝑢(𝐱, ⋅)] = ∫Θ
𝑢(𝐱, 𝜃)𝑑ℙ(𝜃), ∀𝐱 ∈ 𝐷. (3.1.1)

A randomfield can be split into itsmean and fluctuating parts 𝑢(𝐱, 𝜃) = 𝔼[𝑢(𝐱, 𝜃)]+�̃�(𝐱, 𝜃),
where the fluctuating part has zero mean.
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Definition 3.1.3. The covariance function of a random field 𝑢(𝐱, 𝜃) is given by

𝐶(𝐱, 𝐲) ≔ Cov[𝑢(𝐱, ⋅), 𝑢(𝐲, ⋅)] ≔ 𝔼[(𝑢(𝐱, ⋅) − 𝔼[𝑢(𝐱, ⋅)]) ⊗ (𝑢(𝐲, ⋅) − 𝔼[𝑢(𝐲, ⋅)])]
= 𝔼[�̃�(𝐱, ⋅) ⊗ �̃�(𝐲, ⋅)], ∀𝐱, 𝐲 ∈ 𝐷. (3.1.2)

We will sometimes use the notation 𝐶𝑢 to denote the covariance function of the random
field 𝑢. The covariance function is by definition symmetric and positive semi-definite1.

Definition 3.1.4. A random field 𝑢(𝐱, 𝜃) is called second-order if 𝑢(𝐱, 𝜃) ∈ 𝐿2(Θ;𝒱 ) for
every 𝐱 ∈ 𝐷, which means

‖𝑢(𝐱, ⋅)‖𝐿2(Θ;𝒱 ) ≔ (∫Θ
‖𝑢(𝐱, 𝜃)‖2𝒱 𝑑ℙ(𝜃))

1/2
< ∞, ∀𝐱 ∈ 𝐷. (3.1.3)

Thus, 𝑢(𝐱, 𝜃) is a 𝒱 -valued square integrable random field with finite variance.

Definition 3.1.5. A second-order random field 𝑢(𝐱, 𝜃) is stationary or stochastically homo-
geneous if the mean is independent of 𝐱 and the covariance has the form 𝐶(𝐱, 𝐲) = 𝑐(𝐱 − 𝐲)
for a function 𝑐(𝐱).
Definition 3.1.6. A second-order random field 𝑢(𝐱, 𝜃) is isotropic if it is invariant to rota-
tions, i.e. if it is stationary and in addition the function 𝑐(𝐱) = 𝑐(‖𝐱‖2).
Definition 3.1.7. A Gaussian random field 𝑢(𝐱, 𝜃) is a second-order random field such
that 𝑢 = [𝑢(𝐱1), 𝑢(𝐱2), … , 𝑢(𝐱𝑀 )]𝑇 follows the multivariate Gaussian distribution2 for
any 𝐱1, … , 𝐱𝑀 ∈ 𝐷 and any 𝑀 ∈ ℕ. We write 𝑢 ∼ 𝑁 (𝐦, 𝐶) where 𝑚𝑖 = 𝔼[𝑢(𝐱𝑖)] and
𝑐𝑖𝑗 = Cov[𝑢(𝐱𝑖), 𝑢(𝐱𝑗)].
Definition 3.1.8. A random field 𝑢(𝐱, 𝜃) is said to be mean-square continuous if for all 𝐱 ∈ 𝐷

‖𝑢(𝐱 + ℎ) − 𝑢(𝐱)‖𝐿2(Θ;𝒱 ) → 0, as ℎ → 0. (3.1.4)

If the covariance function 𝐶(𝐱, 𝐲) ∈ 𝐶(𝐷 × 𝐷), then 𝑢 is mean-square continuous. Analo-
gously, if 𝐶(𝐱, 𝐲) ∈ 𝐶2(𝐷 ×𝐷), then 𝑢 is mean-square differentiable i.e. there exists a random
field 𝜕𝑥𝑗𝑢(𝐱) with covariance function

𝐶𝑗(𝐱, 𝐲) =
𝜕2𝐶(𝐱, 𝐲)
𝜕𝑥𝑗𝜕𝑦𝑗

, 𝑗 = 1, … , 3, (3.1.5)

1A function 𝑓 ∶ 𝐷 × 𝐷 → ℝ is positive semi-definite if for any n-tuple (𝐱1, … , 𝐱𝑛) ∈ 𝐷 and vector 𝐳 =
[𝑧1, … , 𝑧𝑛]𝑇 ∈ ℝ𝑛 there holds ∑𝑛

𝑗,𝑘=1 𝑧𝑗𝑧𝑘𝑓 (𝐱𝑗 , 𝐱𝑘) ≥ 0
2The probability density function of the multi-variate Gaussian distribution of a 𝑑-dimensional random

vector 𝐱 is 𝑝(𝐱) = 1
(2𝜋)𝑑/2 |𝐶|1/2 𝑒

− 1
2 (𝐱−𝝁)

𝑇𝐶−1(𝐱−𝝁) where 𝝁 is the mean vector and 𝐶 the covariance matrix.
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such that
‖‖‖
𝑢(𝐱 + ℎ𝝐𝑗) − 𝑢(𝐱)

ℎ − 𝜕𝑥𝑗𝑢(𝐱)
‖‖‖𝐿2(Θ;𝒱 )

→ 0, as ℎ → 0. (3.1.6)

Definition 3.1.9. A complex-valued random field 𝑧(𝐱, 𝜃) is defined as

𝑧(𝐱, 𝜃) = 𝑢(𝐱, 𝜃) + 𝚤𝑣(𝐱, 𝜃), 𝐱 ∈ 𝐷, 𝜃 ∈ Θ, (3.1.7)

where 𝑢 and 𝑣 are real-valued random fields. The expectation of 𝑧 is given by

𝔼[𝑧] = 𝔼[𝑢] + 𝚤𝔼[𝑣]. (3.1.8)

If we denote by 𝐶𝑢 and 𝐶𝑣 the covariance functions of 𝑢 and 𝑣 respectively, and use also
the notation 𝐶𝑢𝑣 = Cov[𝑢(𝐱, ⋅), 𝑣(𝐲, ⋅)] and 𝐶𝑣𝑢 = Cov[𝑣(𝐱, ⋅), 𝑢(𝐲, ⋅)], then the covariance
function of 𝑧 is given by

𝐶(𝐱, 𝐲) = 𝔼[ ̃𝑧(𝐱, ⋅) ̃𝑧(𝐲, ⋅)] = 𝐶𝑢(𝐱, 𝐲) + 𝐶𝑣(𝐱, 𝐲) + 𝚤(𝐶𝑣𝑢(𝐱, 𝐲) − 𝐶𝑢𝑣(𝐱, 𝐲)), (3.1.9)

and its pseudo-covariance function (required in general for a complete second-order charac-
terisation [2, 145]) is given by

𝑅𝑧(𝐱, 𝐲) = 𝔼[ ̃𝑧(𝐱, ⋅) ̃𝑧(𝐲, ⋅)] = 𝐶𝑢(𝐱, 𝐲) − 𝐶𝑣(𝐱, 𝐲) + 𝚤(𝐶𝑣𝑢(𝐱, 𝐲) + 𝐶𝑢𝑣(𝐱, 𝐲)). (3.1.10)

If the pseudo-covariance function is zero for all 𝐱, 𝐲 ∈ 𝐷 then the random field 𝑧 is called
proper. If it is also zero-mean, then it is second-order circular.

Definition 3.1.10. The probability density function of a complex, proper and circular, 𝑁 -
dimensional Gaussian random vector 𝐗 is given by

𝑝(𝐱) = 1
𝜋𝑁 det𝐶 exp(−𝐱𝐻𝐶−1𝐱) , (3.1.11)

where 𝐶 = 𝔼[𝐗𝐗𝐻 ] is a Hermitian and positive definite covariance matrix.

3.1.1 Karhunen-Loève Expansion

For a second-order random field 𝑢 ∈ 𝐿2(Θ, 𝐿2(𝐷)) with covariance 𝐶(𝐱, 𝐲), consider the co-
variance operator 𝒞 ∶ 𝐿2(𝐷) → 𝐿2(𝐷) defined by

(𝒞𝜙)(𝐱) = ∫𝐷
𝐶(𝐱, 𝐲)𝜙(𝐲) 𝑑𝐲, 𝐱 ∈ 𝐷. (3.1.12)
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The eigenpairs (𝜆𝑗 , 𝜙𝑗(𝐱)) of 𝒞 satisfy

∫𝐷
𝐶(𝐱, 𝐲)𝜙𝑗(𝐲) 𝑑𝐲 = 𝜆𝑗𝜙𝑗(𝐱). (3.1.13)

From the properties of the covariance function (symmetric and positive semi-definite) and
the fact that 𝑢 ∈ 𝐿2(Θ, 𝐿2(𝐷)), 𝒞 is a self-adjoint, Hilbert-Schmidt operator in 𝐿2(𝐷) so that it
has non-negative, decreasingly ordered, eigenvalues 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 0, with 𝜆𝑗 ∈ 𝑙1(ℕ), and a
complete, orthonormal set of eigenfunctions 𝜙𝑗 in 𝐿2(𝐷) [120]. Therefore, we can represent
the random field by the Karhunen-Loève (KL) spectral expansion

𝑢(𝐱, 𝜃) = 𝔼[𝑢(𝐱)] +
∞
∑
𝑗=1 √

𝜆𝑗𝜙𝑗(𝐱)𝜉𝑗(𝜃), (3.1.14)

where the sum converges in 𝐿2(Θ; 𝐿2(𝐷)). The random variables 𝜉𝑗 have mean zero, unit
variance and are pairwise uncorrelated. They are given by the projection

𝜉𝑗(𝜃) =
1

√𝜆𝑗 ∫𝐷
(𝑢(𝐱, 𝜃) − 𝔼[𝑢(𝐱)])𝜙𝑗(𝐱) 𝑑𝑥. (3.1.15)

If the random field is Gaussian, then 𝜉𝑗 are independent and identically distributed (iid). The
KL expansion is the optimal decomposition of the random field in the space 𝐿2(Θ; 𝐿2(𝐷)), i.e.
in mean square sense.

In practical situations, we use the truncated KL expansion 𝑢𝐽 in 𝐽 terms which has the
same mean but with covariance

𝐶𝐽 (𝐱, 𝐲) =
𝐽
∑
𝑗=1

𝜆𝑗𝜙𝑗(𝐱)𝜙𝑗(𝐲). (3.1.16)

For a continuous covariance function on a bounded domain 𝐷, the eigenfunctions are contin-
uous (Mercer’s theorem) and attain their maximum value in 𝐷 and therefore we additionally
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have uniform convergence

sup
𝐱,𝐲∈𝐷

|𝐶(𝐱, 𝐲) − 𝐶𝐽 (𝐱, 𝐲)| ≤ sup
𝐱,𝐲∈𝐷

||||
∞
∑
𝑗=𝐽+1

𝜆𝑗 |𝜙𝑗(𝐱)|2
∞
∑
𝑗=𝐽+1

𝜆𝑗 |𝜙𝑗(𝐲)|2
||||

1/2

= sup
𝐱∈𝐷

(
∞
∑
𝑗=𝐽+1

𝜆𝑗 |𝜙𝑗(𝐱)|2)
1/2

sup
𝐲∈𝐷

(
∞
∑
𝑗=𝐽+1

𝜆𝑗 |𝜙𝑗(𝐲)|2)
1/2

= sup
𝐱∈𝐷

∞
∑
𝑗=𝐽+1

𝜆𝑗𝜙2𝑗 (𝐱) → 0, as 𝐽 → ∞, (3.1.17)

where we used the fact that 𝜆𝑗 > 0 and the Cauchy-Schwarz inequality. We also have

sup
𝐱∈𝐷

𝔼[(𝑢(𝐱, 𝜃) − 𝑢𝐽 (𝐱, 𝜃))2] → 0, as 𝐽 → ∞. (3.1.18)

If the random field is also stationary, then ∑∞
𝑗=1 𝜆𝑗 = |𝐷|𝑐(𝟎). The choice of the number of

terms 𝐽 in the expansion can be such that a fraction 𝛿 ∈ (0, 1) of the total variance is retained.

∑∞
𝑗=𝐽+1 𝜆𝑗
∑∞

𝑗=1 𝜆𝑗
= 1 −

∑𝐽
𝑗=1 𝜆𝑗

|𝐷|𝑐(𝟎) < 𝛿. (3.1.19)

3.1.2 The Whittle-Matérn Covariance Class

The Whittle-Matérn class of covariance functions for a random field 𝑏 is defined as

𝐶𝑏(𝐱, 𝐲) =
Var[𝑏]
2𝜈−1Γ(𝜈) (

‖𝐱 − 𝐲‖2
𝑙 )

𝜈
𝐾𝜈 (

‖𝐱 − 𝐲‖2
𝑙 ) , (3.1.20)

where Γ here is the Gamma function, 𝑙 > 0 is the correlation length, and 𝐾𝜈 is the order 𝜈 > 0,
modified Bessel function of second kind. The regularity is controlled by 𝜈 so that taking
𝜈 = 1/2 gives the exponential covariance function

𝐶𝑏(𝐱, 𝐲) = Var[𝑏] exp (−‖𝐱 − 𝐲‖2
𝑙 ) , (3.1.21)

while taking 𝜈 → ∞ gives the Gaussian (squared exponential) covariance function

𝐶𝑏(𝐱, 𝐲) = Var[𝑏] exp (−‖𝐱 − 𝐲‖22
𝑙2 ) . (3.1.22)
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For such a choice of 𝐶𝑏 , the random field 𝑏(𝐱, 𝜃) is 𝑛 < 𝜈 mean-square differentiable. Due to
the asymptotic properties of the modified Bessel function of the second kind, we also have
that (see Graham et al. [83] and Lord et al. [120])

𝔼[|𝑏(𝐱) − 𝑏(𝐲)|2] ≤ 𝐿‖𝐱 − 𝐲‖𝑠2, ∀𝐱, 𝐲 ∈ 𝐷, (3.1.23)

for some 𝐿 > 0 and all 𝑠 such that 𝑠 ≤ 2𝜈 and 𝑠 ∈ (0, 2).
A more general form that we will use in this thesis is defined as

𝐶𝑏(𝐱, 𝐲) =
Var[𝑏]
2𝜈−1Γ(𝜈) (‖𝐱 − 𝐲‖𝑀)𝜈 𝐾𝜈 (‖𝐱 − 𝐲‖𝑀) , 𝐱, 𝐲 ∈ 𝐷 (3.1.24)

where ‖𝐱‖2𝑀 = 𝐱𝑇𝑀−1𝐱 is the weighted Euclidean normwith𝑀 ∈ ℝ3×3 a constant, symmetric,
positive definitematrix. Note that this covariance function is in general anisotropic; the usual
isotropic case with length scale 𝑙 occurs when 𝑀 = 𝑙2𝐼3 or when using a scaled version of
eq. (3.1.24) as 𝑀 = (𝑙/2𝜈)2𝐼3. The anisotropic Whittle-Matérn covariance can be considered
equivalent to the isotropic case under a linear coordinate transformation. Writing 𝑀−1 =
𝑄𝑇Λ𝑄, where Λ is a diagonal matrix with the eigenvalues of 𝑀−1 on the diagonal and 𝑄 is
an orthogonal matrix with the corresponding eigenvectors as columns, we can define new
coordinates 𝐱′ = Λ1/2𝑄𝐱, so that ‖𝐱‖𝑀 = ‖𝐱′‖2. In general, properties of the anisotropic
case can be derived from existing analysis using the equivalence of finite-dimensional norms.
Moreover, if we define

𝑐(𝑟) = 1
2𝜈−1Γ(𝜈) (𝑟)

𝜈 𝐾𝜈 (𝑟) , (3.1.25)

then the Fourier transform of 𝐶(𝐱, 𝐲) = 𝑐(‖𝐱 − 𝐲‖2) in 𝑑 spatial dimensions is

𝑓 (𝐰) = Γ(𝜈 + 𝑑/2)
Γ(𝜈)

2𝑑/2
(1 + ‖𝐰‖22)𝜈+𝑑/2

, (3.1.26)

and the Fourier transform of 𝐶𝐴 = 𝐶(𝐱′, 𝐲′) = 𝑐(‖𝐱′ − 𝐲′‖2) = 𝑐(‖𝐱 − 𝐲‖𝑀 ) is 𝑔(𝐰) =
√det𝑀𝑓 (√𝐰𝑇𝑀𝐰). Using a theorem from Widom [162], one can show that

𝜆𝑗 ≤ 𝐾(𝐷,𝑀, 𝑑, 𝜈)𝑗−(2𝜈/𝑑+1). (3.1.27)

An alternative way to derive this bound is to notice that 𝐶(𝐱′, 𝐲′) obeys the conditions

𝑘(1 + ‖𝐰‖22)−(𝜈+𝑑/2) ≤ 𝑔(𝐰) ≤ 𝐾(1 + ‖𝐰‖22)−(𝜈+𝑑/2), 0 < 𝑘 ≤ 𝐾. (3.1.28)
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and
lim𝑅→∞∫‖𝐱′‖>𝑅

|𝜕𝜶 𝑐(𝐱′)| 𝑑𝐱′ = 0, |𝜶 | ≤ 2 ⌈𝜈 + 𝑑/2⌉ , (3.1.29)

and therefore Bachmayr et al. [18, Theorem 3.1] stands, giving eq. (3.1.27). Additionally,
in Bachmayr et al. [18, eq. 79], the following non-uniform bound for the eigenfunctions is
proved

‖𝜙𝑗‖𝐿∞(𝐷) ≤ 𝐾𝜆−𝑠/(2𝜈+𝑑)𝑗 , 𝑑/2 < 𝑠 < 𝜈 + 𝑑/2, (3.1.30)

which taking 𝑠 = 𝑑/2 + 𝜖, with 𝜖 > 0 sufficiently small, and using eq. (3.1.27) gives the
following (not always sharp) bound for 𝜓𝑗 = √𝜆𝑗𝜙𝑗

‖𝜓𝑗‖𝐿∞(𝐷) ≤ 𝐾𝑗−𝜈/𝑑+𝜖 . (3.1.31)

3.2 Stochastic Formulation

In this section, we formulate the stochastic model that is aimed at providing a probabilistic
description of the magneto-quasistatic, time-harmonic Maxwell equations, when the conduc-
tivity field is uncertain and described as a random field within a domain 𝐷. This description
is given by a corresponding stochastic PDE with solutions that are random variables and
can be characterised statistically. The general model we examine is again inspired by typical
surveys used in CSEM.

We assume that there are two subdomains 𝐷+ and 𝐷− of 𝐷, such that 𝐷+ ∩ 𝐷− = ∅,
𝐷+ ∪ 𝐷− = 𝐷 with polyhedral interface 𝑆 = 𝐷+ ∩ 𝐷−. In 𝐷+, the conductivity is assumed to
be a constant 𝜎+ > 0, while in 𝐷− the lack of knowledge leads us to model the conductivity
as a spatial random field 𝜎−(𝐱, 𝜃) in a probability space (Θ, Σ, ℙ). Furthermore, to enforce
positivity we assume 𝜎−(𝐱, 𝜃) is lognormal, so that we write

𝜎(𝐱, 𝜃) = {𝜎+ 𝐱 ∈ 𝐷+,
𝜎−(𝐱, 𝜃) 𝐱 ∈ 𝐷−, 𝜃 ∈ Θ,

(3.2.1)

with
𝜎−(𝐱, 𝜃) = 𝜎∗(𝐱) + 𝜎0(𝐱) exp(𝑏(𝐱, 𝜃)), (3.2.2)

where 𝜎∗(𝐱) and 𝜎0(𝐱) are continuous functions in 𝐷− that are non-negative and strictly
positive respectively. The random field 𝑏(𝐱, 𝜃) ∈ 𝐿2(Θ, 𝐿2(𝐷−)) is assumed to be a Gaussian,
mean-zero field with stationary covariance function 𝐶𝑏(𝐱, 𝐲) that belongs to the Whittle-
Matérn class in eq. (3.1.24).
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Now, given realisations 𝜎(⋅, 𝜃), we seek random field realisations 𝐄(⋅, 𝜃) ∈ 𝑉 such that

𝑎(𝐄(𝐱, 𝜃), 𝐯(𝐱); 𝜎(𝐱, 𝜃)) = 𝑓 (𝐯(𝐱)), ∀𝐯 ∈ 𝑉 , (3.2.3)

for almost all 𝜃 ∈ Θ.

Proposition 3.2.1. The random field 𝐄(𝐱, 𝜃) defined as a measurable mapping 𝐄 ∶ 𝐷×Θ → 𝑉
such that for almost all 𝜃 ∈ Θ, it is the solution of eq. (3.2.3), has finite moments i.e. ‖𝐄‖𝐿𝑝(Θ,𝑉 ) <
∞ for all 0 ≤ 𝑝 ≤ ∞.

Proof. We follow Charrier [32, Proposition 2.1]. For the stationary covariance 𝐶𝑏(𝐱, 𝐲) =
𝑐(‖𝐱 − 𝐲‖𝑀 ) in eq. (3.1.24), we have

𝔼[|𝑏(𝐱) − 𝑏(𝐲)|2] = 2(𝑐(𝟎) − 𝑐(‖𝐱 − 𝐲‖𝑀 ))
= 2(𝑐(0) − 𝑐(‖𝐱′ − 𝐲′‖2))
≤ 𝐾‖𝐱′ − 𝐲′‖𝑠2 = 𝐾‖𝐱 − 𝐲‖𝑠𝑀
≤ 𝐾‖𝐱 − 𝐲‖𝑠2, 𝑠 ≤ 2𝜈, 𝑠 ∈ (0, 2), ∀𝐱, 𝐲 ∈ 𝐷− (3.2.4)

where we used property (3.1.23) of the isotropic covariance and the equivalence of the norms.
Therefore, the Kolmogorov continuity theorem (see Prato and Zabczyk [131, Theorem 3.5])
applies and there is a version of 𝑏 with realisations which are almost surely Hölder continu-
ous with an exponent 𝛽 ≤ min(𝜈, 1) (i.e. in 𝐶0,𝛽(𝐷−)). Under the continuity assumptions on
𝜎0 and 𝜎∗, 𝜎−(𝐱, 𝜃) is also Hölder-continuous with exponent 𝛽 and we also have that a.e. in
Θ

0 < 𝜎min(𝜃) = ess inf𝐱∈𝐷 𝜎(𝐱, 𝜃) ≤ 𝜎(𝐱, 𝜃) ≤ ess sup
𝐱∈𝐷

𝜎(𝐱, 𝜃) = 𝜎max(𝜃) < ∞, a.e. in 𝐷. (3.2.5)

Fixing any 𝜃 and applying the Lax-Milgram lemma as in the deterministic case in corol-
lary 2.2.1 we have the ℙ-a.s. uniqueness of the solution 𝐄(⋅, 𝜃) with the bound

‖𝐄(⋅, 𝜃)‖𝑉 ≤ 1
𝛼(𝜃)‖𝑓 ‖𝑉 ∗ , (3.2.6)

where we take 𝛼(𝜃) = (𝜇2max + (𝜔𝜎min(𝜃))−2)−1/2. From Fernique’s theorem (see e.g. Sullivan
[156]), it can be derived as in Charrier [32, Proposition 2.3] that the random variables 𝜎𝜆min(𝜃)
and 𝜎𝜆max(𝜃) are in 𝐿𝑝(Θ) for any 𝑝 ≥ 0 and 𝜆 ∈ ℝ. Therefore we have that

𝔼 [‖𝐄‖𝑝𝑉 ] ≤ 𝔼 [𝛼(𝜃)−𝑝] ‖𝑓 ‖𝑝𝑉 ∗ , (3.2.7)
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and since 𝛼(𝜃)−1 ∈ 𝐿𝑝(Θ) we get the finiteness of all moments

‖𝐄‖𝐿𝑝(Θ,𝑉 ) ≤ ‖𝛼(𝜃)−1‖𝐿𝑝(Θ)‖𝑓 ‖𝑉 ∗ , 0 ≤ 𝑝 < ∞. (3.2.8)

3.3 Deterministic, Parametric Formulation

To achieve a parametric representation that enables a computational procedure for obtaining
realisations of the random field, we use the Karhunen-Loève expansion to write

𝑏(𝐱, 𝜃) =
∞
∑
𝑗=1 √

𝜆𝑗𝜙𝑗(𝐱)𝜉𝑗(𝜃), 𝐱 ∈ 𝐷−, 𝜃 ∈ Θ. (3.3.1)

As mentioned, in this case the random variables 𝑦𝑗 = 𝜉𝑗(𝜃) are iid and distributed as 𝑁(0, 1).
Using 𝜓𝑗 = √𝜆𝑗𝜙𝑗 , we get the parametric expression

𝜎−(𝐱, 𝐲) = 𝜎∗(𝐱) + 𝜎0(𝐱) exp(
∞
∑
𝑗=1

𝑦𝑗𝜓𝑗(𝐱)) , 𝐱 ∈ 𝐷−, (3.3.2)

with the random vector 𝐲 defined on themeasure space (𝑈 ,ℬ(𝑈 ), 𝛾𝐺), where𝑈 = ℝℕ,ℬ(𝑈)
is the 𝜎-algebra generated by the Borel cylinders and 𝛾𝐺 = ⊗∞𝑗=1N(0, 1) is the countable tensor
product Gaussian measure. We can write

𝜎(𝐱, 𝐲) = 𝜎+𝜒𝐷+(𝐱) + 𝜎−(𝐱, 𝐲)𝜒𝐷−(𝐱), 𝐱 ∈ 𝐷, 𝐲 ∈ 𝑈 . (3.3.3)

Truncated versions of the above expressions can be understood by setting 𝐲 = 𝐲𝐽 =
(𝑦1, … , 𝑦𝐽 , 0, …).

Example KL expansion and realisations. Figure 3.1 shows the normalised eigenval-
ues 𝜆𝑗 and norms ‖𝜓𝑗‖𝐿∞(𝐷−) for the Whittle-Matérn covariance function in eq. (3.1.24) with
𝜈 = 15/2 and 𝑀1/2 = diag(1250, 1250, 300). The numerical eigenpairs were computed by solv-
ing the generalised eigenvalue problem that was derived by the use of Galerkin FEM with
piecewise linear basis functions on tetrahedra to solve eq. (3.1.13) (see Betz et al. [26] for a
review of different method to compute the KL expansion). Specifically, by expressing the
eigenfunctions 𝜙𝑗 ∈ 𝐿2(𝐷−) in terms of the 𝑁 FEM basis functions ℎ𝑖 as 𝜙𝑗(𝐱) = ∑𝑁

𝑖=1 𝑑 𝑖𝑗ℎ𝑖(𝐱),
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Fig. 3.1 Normalised eigenvalues 𝜆𝑗 and norms ‖𝜓𝑗‖𝐿∞(𝐷−) for Whittle-Matérn covariance
function with 𝜈 = 15/2 and 𝑀1/2 = diag(1250, 1250, 300) defined in the domain 𝐷− =
(−5000, 5000) × (−5000, 5000) × (−4000, 0).

we obtain the generalised eigenvalue problem

𝑁
∑
𝑘=1

𝑑𝑘𝑗 ∫𝐷−
∫𝐷−

𝐶(𝐱, 𝐲)ℎ𝑘(𝐱)ℎ𝑖(𝐲) 𝑑𝐱𝑑𝐲 = 𝜆𝑗
𝑁
∑
𝑘=1

𝑑𝑘𝑗 ∫𝐷−
ℎ𝑘(𝐱)ℎ𝑖(𝐱) 𝑑𝐱, (3.3.4)

which we can write as𝐻𝐝𝑗 = 𝜆𝑗𝑀𝐝𝑗 , with𝐻𝑘𝑖 = ∫𝐷−
∫𝐷−

𝐶(𝐱, 𝐲)ℎ𝑘(𝐱)ℎ𝑖(𝐲) 𝑑𝐱𝑑𝐲,𝑀 the Gram
matrix of the nodal basis functions and 𝐝𝑗 the 𝑗-th eigenfunction coefficient vector. By also
expressing the covariance function 𝐶 ∈ 𝐿2(𝐷− × 𝐷−) in terms of the basis functions ℎ𝑖 as
𝐶(𝐱, 𝐲) = ∑𝑁

𝑖,𝑗=1 𝑘𝑖𝑗ℎ𝑖(𝐱)ℎ𝑗(𝐲), we get

𝑀𝐾𝑀𝐝𝑗 = 𝜆𝑗𝑀𝐝𝑗 , (3.3.5)

where 𝐾 is the matrix with elements 𝑘𝑖𝑗 that is generated by evaluating the covariance func-
tion at the nodes of the tetrahedral mesh. The decay rates for large 𝑗 agree with the asymp-
totic rates given in eqs. (3.1.27) and (3.1.31), with the eigenvalues decaying monotonically
and the norms ‖𝜓𝑗‖𝐿∞(𝐷−) staying bounded from above. Using this choice of covariance func-
tion for the random field 𝑏, we generate example realisations of 𝜎 from eq. (3.3.3) by using
the computed KL expansion of 𝑏 and random vectors 𝐲 up to dimension 𝐽 = 1500 (capturing
99% of the variance).
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Fig. 3.2 Example conductivity 𝜎 random field realisations for 𝜎+ = 3.3, 𝜎∗ = 0, 𝜎0 = 1/2, 𝜈 =
15/2, Var[𝑏] = 1, 𝑀1/2 = diag(1250, 1250, 300) on domain 𝐷 = (−5000, 5000) × (−5000, 5000) ×
(−4000, 4000), separated into 𝐷+ and 𝐷− by 𝑧 = 0.

The variational problem now becomes: given 𝐲 ∈ 𝑈 , find 𝐄(⋅, 𝐲) ∈ 𝑉 such that

𝑎(𝐄(𝐱, 𝐲), 𝐯(𝐱); 𝜎(𝐱, 𝐲)) = 𝑓 (𝐯(𝐱)), ∀𝐯 ∈ 𝑉 . (3.3.6)

The measurability of the maps 𝐲 → 𝜎(⋅, 𝐲) and 𝐲 → 𝐄(⋅, 𝐲) and the finiteness of ‖𝐄‖𝐿𝑝(𝑈 ,𝑉 )
requires that

𝑏(𝐱, 𝐲) =
∞
∑
𝑗=1

𝑦𝑗𝜓𝑗(𝐱) ∈ 𝐿∞(𝐷−), and 𝔼(exp(𝑝‖𝑏(𝐱, 𝐲)‖𝐿∞(𝐷−))) < ∞, 0 ≤ 𝑝 < ∞. (3.3.7)

which can be derived from Hölder continuity as in the stochastic case (see e.g. Graham et al.
[83]). Then uniqueness of weak solutions to eq. (3.3.6) is guaranteed from the Lax-Milgram
lemma and

‖𝐄‖𝐿𝑝(𝑈 ,𝑉 ) ≤ ‖𝛼(𝐲)−1‖𝐿𝑝(𝑈 )‖𝑓 ‖𝑉 ∗ , ∀𝐲 ∈ 𝑈 , 0 ≤ 𝑝 < ∞, (3.3.8)

where we take 𝛼(𝐲) = (𝜇2max + (𝜔𝜎min(𝐲))−2)−1/2 with

𝜎min(𝐲) = min(𝜎+, ess inf𝐱∈𝐷−
𝜎−(𝐱, 𝐲)), (3.3.9)

and
ess inf𝐱∈𝐷−

𝜎−(𝐱, 𝐲) ≥ ess inf𝐱∈𝐷−
𝜎∗(𝐱) + ess inf𝐱∈𝐷−

𝜎0(𝐱) exp (−‖𝑏(𝐱, 𝐲)‖𝐿∞(𝐷−)) . (3.3.10)

Note also that the continuity factor is 𝛾(𝐲) = max(𝜇−1min, 𝜔𝜎max) with

𝜎max = max(𝜎+, ess sup𝐱∈𝐷−
𝜎−(𝐱, 𝐲)), (3.3.11)
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and
ess sup
𝐱∈𝐷−

𝜎−(𝐱, 𝐲) ≤ ess sup
𝐱∈𝐷−

𝜎∗(𝐱) + ess sup
𝐱∈𝐷−

𝜎0(𝐱) exp (‖𝑏(𝐱, 𝐲)‖𝐿∞(𝐷−)) . (3.3.12)

Note that the same properties are also shared by the truncated solution 𝐄𝐽 when using a
truncated representation 𝜎𝐽 (⋅, 𝐲𝐽 ) = 𝜎+𝜒𝐷+(⋅) + 𝜎−(⋅, 𝐲𝐽 )𝜒𝐷−(⋅). The truncation error ‖𝐄 − 𝐄𝐽 ‖𝑉
can be estimated as in Graham et al. [83] or alternatively, we give here a bound based on
the framework developed in Bachmayr et al. [17]. First, the following alternative sufficient
condition3 is introduced in Bachmayr et al. [17]:

Assumption 3.3.1. Assume there is a positive sequence (𝜌𝑗)𝑗≥1 such that

∞
∑
𝑗=1

𝜌𝑗 |𝜓𝑗(𝐱)| ∈ 𝐿∞(𝐷−) and
∞
∑
𝑗=1

exp(−𝜌2𝑗 ) < ∞. (3.3.13)

Then uniqueness of the parametric problem is guaranteed [17, Theorem 2.2] and (3.3.8)
is again true. For our specific choice of 𝐶𝑏 , as shown in eq. (3.1.31), the norms ‖𝜓𝑗‖𝐿∞(𝐷−) are
bound for a sufficiently small 𝜖 > 0 as

‖𝜓𝑗(𝐱)‖𝐿∞(𝐷−) ≤ 𝐾𝑗−𝜈/3+𝜖 , 𝐾 > 0. (3.3.14)

By choosing, 𝜌𝑗 = ‖𝜓𝑗(𝐱)‖−𝜖𝐿∞ , this indicates that assumption 3.3.1 is satisfied for 𝜈 > 3. Since,
almost surely ‖‖∑∞

𝑗=1 𝑦𝑗𝜓𝑗(𝐱)‖‖𝐿∞(𝐷−)
< ∞ (see [17]), the truncation error of the weak solution

can be estimated in an almost sure sense, using proposition 2.2.3,

‖𝐄 − 𝐄𝐽 ‖𝑉 ≤ 𝐾‖𝜎 − 𝜎𝐽 ‖𝐿∞(𝐷) = 𝐾‖𝜎−(𝐲) − 𝜎−(𝐲𝐽 )‖𝐿∞(𝐷−)

≤ 𝐾
‖‖‖‖
exp(

∞
∑
𝑗=1

𝑦𝑗𝜓𝑗(𝐱)) − exp(
𝐽
∑
𝑗=1

𝑦𝑗𝜓𝑗(𝐱))
‖‖‖‖𝐿∞(𝐷−)

≤ 𝐾
‖‖‖‖
∞
∑
𝑗>𝐽

𝑦𝑗𝜓𝑗(𝐱)
‖‖‖‖𝐿∞(𝐷−)

≤ 𝐾
‖‖‖‖
∞
∑
𝑗=1

𝜌𝑗 |𝜓𝑗(𝐱)|
‖‖‖‖𝐿∞(𝐷−)

sup
𝑗≥𝐽

𝜌−1𝑗 |𝑦𝑗 |, (3.3.15)

where the constant 𝐾 is allowed to change between inequalities. Furthermore, assuming the
condition (𝜌−1𝑗 ) ∈ 𝑙𝑞 and without loss of generality that the sequence (𝜌𝑗)𝑗≥1 is in increasing
order, leads to the estimate ‖𝐄 − 𝐄𝐽 ‖𝑉 ≤ 𝐾𝐽−1/𝑞 .
Remark 3.3.1. Let us remark here that the choice of the KL expansion to express the random
field in a parametric form is not unique. Any Schauder basis in the Banach space 𝑋 is suitable

3This condition is not equivalent to Hölder smoothness and takes into account the support properties of the
basis functions 𝜓𝑗 when these are non-overlapping or partially overlapping.
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for this purpose. The choice influences the effectiveness of approximations; for example,
in one basis the representation may be sparse while in another basis it might not be. In
Bachmayr et al. [18], it was shown in fact that the KL expansion is not optimal for sparse
polynomial approximation and other types of bases, such as wavelet bases, were proposed
that are more effective in this regard.

3.4 Uncertainty Quantification

3.4.1 Forward UQ

Let’s recap. We started with a probabilistic description, due to lack of knowledge, of the con-
ductivity field 𝜎− ∈ 𝐿∞(𝐷−, ℝ) in Maxwell equations, and expressed it as lognormal random
field. We specified the underlying Gaussian random field 𝑏 as having zero mean and a covari-
ance function 𝐶𝑏 belonging to theWhittle-Matérn class, and showed that 𝜎− is Hölder contin-
uous on 𝐷−. Working now instead on the separable Banach subspace 𝑋 = 𝐶(𝐷−) ⊆ 𝐿∞(𝐷−),
the aforementioned construction assigns a prior Gaussian measure 𝑁(0, 𝒞 ) on 𝑋 . We then
used the Karhunen-Loève expansion to express draws from the prior as draws from a count-
ably infinite sequence of parameters 𝐲 = (𝑦𝑗)𝑗≥1 with tensor product Gaussian measure
𝛾𝐺 = ⊗𝑗≥1𝑁(0, 1), which induces a push-forward measure on 𝑋 . Having established the
well-posedness of the parametric formulation, we can proceed to statistically characterise
outputs, such as the solution or measurements, that are themselves random functions of 𝐲,
by integrating with respect to the prior measure. We will focus on the second order char-
acterisation of any, linear in 𝐄, output 𝑠(𝐲) = 𝑠(𝐄(𝐲)), which requires the calculation of the
following Quantities of Interest (QoIs)

𝔼[𝑠] = ∫𝑈
𝑠(𝐲) 𝑑𝛾𝐺(𝐲), (3.4.1)

Cov[𝑠, 𝑠] = 𝔼[(𝑠 − 𝔼[𝑠])(𝑠 − 𝔼[𝑠])], (3.4.2)
Cov[𝑠, 𝑠] = 𝔼[(𝑠 − 𝔼[𝑠])(𝑠 − 𝔼[𝑠])], (3.4.3)

i.e. the (prior) mean, covariance and pseudo-covariance of 𝑠 respectively4. For any integral
of this type we denote the integrand as 𝑧 = 𝑧(𝐲) (e.g. 𝑧 = 𝑠 for the mean of 𝑠). In practice,
eq. (3.4.1) becomes a high-dimensional integration problem which needs a correspondingly
high number of computationally expensive deterministic solutions of eq. (3.3.6). In chapter 4,
we will describe the method that we will use to approximate these integrals.

4Quantities such as 𝔼[⋅] will be associated in general with the prior measure 𝛾𝐺 unless explicitly indexed as
𝔼𝛾 [⋅], in which case they will be associated to the measure 𝛾
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3.4.2 Inverse UQ: Bayes’ Theorem in Function Space

As soon as data are available that provide information on the problem, the prior needs to
be updated to a posterior that incorporates the additional constraints. This is exactly what
Bayes’ rule is designed for. Since, we are working in function space, the usual form of Bayes’
rule is not valid due to the non-existence of an infinite-dimensional analogue to Lebesgue
measure and therefore the unavailability of Lebesque densities. Nevertheless, an equivalent
formulation is available which informally says that the Radon-Nikodým derivative of the
posterior measure with respect to the prior measure is proportional to the likelihood i.e. the
conditional probability of observing the data for a fixed value of the parameter.

Let’s be more specific for the problem we are examining following [63, 74, 155, 156].
Similar to the deterministic case, we model the measurement data 𝐝 ∈ ℂ𝐾 using the forward
map 𝒢 and an additive, zero-mean, Gaussian noise 𝜼 ∼ 𝐶𝑁(0, Γ), which is a complex and
proper 𝐾 -dimensional Gaussian vector with pdf 𝑝 given by eq. (3.1.11) and a Hermitian (self-
adjoint) and positive definite covariance matrix Γ ∈ ℂ𝐾×𝐾 , as

𝐝 = 𝒢 (𝜎) + 𝜼. (3.4.4)

Note that we assume that 𝜂 is independent of 𝜎 . We next define a potential or Hamiltonian
𝐻(𝜎; 𝐝) such that 𝑝(𝐝 − 𝒢 (𝜎)) ∝ 𝑝(𝐝) exp(−𝐻(𝜎; 𝐝)). The potential 𝐻 is the negative log-
likelihood which given the noise model for 𝜂 is specified as

𝐻(𝜎; 𝐝) = ‖𝐝 − 𝒢 (𝜎)‖2Γ−1 = ‖Γ−1/2(𝐝 − 𝒢 (𝜎))‖2. (3.4.5)

Given the discussion in the previous section, we have a prior probability measure 𝛾𝐺(𝑋) = 1
on 𝑋 . It is also true that 𝒢 is continuous due to eq. (3.2.6) and the boundedness of the mea-
surement operator 𝒪 . Additionally, from proposition 2.2.3, 𝒢 is Lipschitz continuous. Hence,
the conditions in Stuart [155, Assumption 2.7] are satisfied and application of Bayes’ rule (see
Stuart [155, Theorem 6.31] or Sullivan [156, Theorem 6.6]) gives that the random function 𝜎
given the data 𝐝, denoted by 𝜎|𝐝, is distributed as the posterior measure 𝛾𝐝 which is abso-
lutely continuous with respect to the prior measure 𝛾𝐺 and has Radon-Nikodým derivative
given by

𝑑𝛾𝐝
𝑑𝛾𝐺

(𝜎) = 1
𝑍 exp(−𝐻(𝜎; 𝐝)), (3.4.6)

where 𝑍 is the normalisation constant or partition function given by

𝑍 = ∫𝑋
exp(−𝐻(𝜎; 𝐝)) 𝑑𝛾𝐺(𝜎) > 0. (3.4.7)
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The Bayesian inverse problem described above is well-posed, meaning that it is stable un-
der perturbations of the data and under approximations 𝒢𝑁 of the forward map 𝒢 . More
precisely, the Hellinger distance 𝑑𝐻 (𝛾𝐝, 𝛾 �̃�) between two posterior measures 𝛾𝐝 and 𝛾 �̃� that
correspond to different data 𝐝 and �̃�, obeys (see [155, Corollary 4.4])

𝑑𝐻 (𝛾𝐝, 𝛾 �̃�) ≤ 𝐶‖𝐝 − �̃�‖, ∀𝐝, �̃� ∈ ℂ𝐾 . (3.4.8)

Also, under the conditions in Stuart [155, Corollary 4.9], which assign a function 𝜓(𝑁 ) that
characterises the convergence rate of an approximation 𝒢𝑁 , with 𝜓(𝑁 ) → 0 as 𝑁 → ∞, the
Hellinger distance between the posterior measure 𝛾𝐝 and its approximation 𝛾𝐝𝑁 is bounded
as

𝑑𝐻 (𝛾𝐝, 𝛾𝐝𝑁 ) ≤ 𝐶𝜓(𝑁 ). (3.4.9)

For the FEM approximation discussed in chapter 2, the required conditions for eq. (3.4.9) to
hold are satisfied due to the fact that the approximation space is conforming i.e. 𝑉ℎ ⊂ 𝑉 and
using𝒢ℎ to denote the FEM approximation, with ℎ → 0 as𝑁 → ∞, we have |𝒢 (𝜎)−𝒢ℎ(𝜎)| ≤
‖𝒪‖𝐿(𝑉 ,ℂ𝐾 )‖𝐄(𝜎) − 𝐄ℎ(𝜎)‖𝑉 . Therefore, 𝜓(𝑁 ) ∝ ‖𝐄 − 𝐄ℎ‖𝑉 → 0 as the mesh size ℎ → 0 or
equivalently 𝑁 → ∞. If 𝐄 ∈ 𝐻 𝑟 (curl, 𝐷) for 1/2 < 𝑟 ≤ 1, we can further use eq. (2.3.15) to
obtain the rate 𝜓(𝑁 ) ∝ ℎ𝑟 for some 1/2 < 𝑟 ≤ 1.
Remark 3.4.1. The estimates eqs. (3.4.8) and (3.4.9) directly transfer into estimates in terms of
the posterior mean due to ‖𝔼𝛾 [𝑓 ] − 𝔼 ̃𝛾 [𝑓 ]‖ ≤ 𝐶𝑠𝑑𝐻 (𝛾 , ̃𝛾 ) for some measurable 𝑓 with finite
second moments with respect some well-defined measures 𝛾 , ̃𝛾 .

Parametric Bayesian Inverse Problem

In the parametric formulation, eqs. (3.4.4), (3.4.6) and (3.4.7) take the equivalent form

𝐝 = 𝒢 (𝜎(𝐲)) + 𝜼 (3.4.10)

𝑑𝛾𝐝
𝑑𝛾𝐺

(𝐲) = 1
𝑍 exp(−𝐻(𝐲; 𝐝)), (3.4.11)

𝑍 = ∫𝑈
exp(−𝐻(𝐲; 𝐝)) 𝑑𝛾𝐺(𝐲) > 0. (3.4.12)

For any function 𝑓 = 𝑓 (𝐲) we now have the QoIs which are infinite-dimensional integrals
with respect to the posterior measure

𝔼𝛾𝐝[𝑓 ] =
1
𝑍 ∫𝑈

𝑓 (𝐲) 𝑑𝛾𝐝(𝐲) = 1
𝑍 ∫𝑈

𝑓 (𝐲) exp(−𝐻(𝐲; 𝐝)) 𝑑𝛾𝐺(𝐲). (3.4.13)
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For example, the posterior mean of 𝑓 (𝐲) = 𝜎(𝐲) is given by

𝔼𝛾𝐝[𝜎] =
1
𝑍 ∫𝑈

𝜎(𝐲) exp(−𝐻(𝐲; 𝐝)) 𝑑𝛾𝐺(𝐲). (3.4.14)

The approximation of these integrals can in principle proceed as in the forward UQ case,
however the existence of the factor exp(−𝐻) proves to be crucial, especially in the case of
small noise or large number of observations which is known to lead to concentration of
measure effects [142], thereby posing a challenge for computational methods.

MAP Estimator

Besides the posterior mean in eq. (3.4.14), which minimises a “mean square error” Bayes
cost [74], another point estimator is the maximum a posteriori (MAP) estimate of 𝜎 given
𝐝, which in the infinite dimensional setting is obtained by minimising the Onsager-Machlup
functional 𝐼 ∶ 𝑋 → ℝ [62, 63] over the Cameron-Martin space5 𝐸𝛾𝐺

min𝑏∈𝐸𝛾𝐺
𝐼 (𝑏) = 𝐻(𝜎(𝑏); 𝐝) + 1

2‖𝑏‖𝒞 −1 . (3.4.15)

The connection with eq. (2.4.2) is clear if one identifies𝑊𝑑 = Γ−1/2 andℛ = 𝒞 −1/2. Therefore,
in this case with Gaussian prior and Gaussian noise, Tikhonov regularisation and the MAP
estimator can be considered equivalent. In the parametric formulation, using 𝑋 = 𝐿2(𝐷−),
eq. (3.4.15) becomes

min𝐲∈𝑈 𝐼 (𝐲) = 𝐻(𝐲; 𝐝) + 1
2‖𝐲‖

2. (3.4.16)

The MAP estimator converges to the “truth” in the case of large number of data or in the
small noise limit [62]. Additionally, assuming 𝐲0 is the non-degenerate solution of eq. (3.4.16),
it is proved in Schillings and Schwab [142, Theorem 3.1] (in the case of finite truncation di-
mension 𝐽 ) that𝔼𝛾𝐝[𝑓 ] in eq. (3.4.13) is given in the small-noise limit Γ → 0 by the asymptotic
expansion

𝔼𝛾𝐝[𝑓 ] = 𝑓 (𝐲0)(1 + 𝑜(1)). (3.4.17)

While we will not use the MAP estimator directly for estimation6, it will be employed to
improve the convergence behaviour of the Sparse Quadrature method in chapter 4 for the
Bayesian inverse problem.

5If 𝑋 is a Hilbert space, then the Cameron-Martin space 𝐸𝜇 for the measure 𝜇 = 𝑁 (𝑚0, 𝒞 ) is the completion
of 𝒞 1/2(𝑋) with respect to the inner product (⋅, ⋅)𝒞 −1 = (𝒞 −1/2⋅, 𝒞 −1/2⋅)𝑋

6Although the MAP estimator is not directly connected to uncertainty estimates, one can use Bayesian
confidence regions to provide a measure of uncertainty [130]



Chapter 4

Approximation and Model Reduction

In this chapter we describe the approximation methods used for the estimation of the QoIs,
namely Sparse Quadrature (SQ), Reduced Basis (RB) and Empirical Interpolation Method
(EIM).

4.1 Sparse Quadrature

Sparse Quadrature is based on integration defined on sparse grids and the Smolyak algorithm
[79, 153, 158]. The construction and properties of SQ are similar to sparse grid stochastic
collocationmethods [14, 19, 25, 73, 75, 90, 124, 127, 157, 164] which are based on interpolation.
In its generalised form, it is defined in terms of a sum of operators on downward closed
index sets Λ ⊂ ℱ (as mentioned in section 1.7, ℱ is the countable index set of all sequences
𝝂 = (𝜈𝑗)𝑗≥1 of non-negative integers which are finitely supported)

if 𝝂 ∈ Λ and 𝝁 ≤ 𝝂, then 𝝁 ∈ Λ. (4.1.1)

Downward closed index sets can be understood as having no “holes” and have favourable
properties for interpolation and therefore for interpolatory quadrature rules. For example,
downward closed polynomial spaces ℙΛ = span{𝐲𝝂 , 𝜈 ∈ Λ}, that are span by monomials
raised to powers from a downward closed index set, are independent of the polynomial basis.
Following Chen [35] and Schillings and Schwab [143, 144] , we begin by defining for a level
𝑙 ≥ 0, a sequence of 𝑚𝑙 univariate quadrature points (𝑦 𝑙𝑘)𝑚𝑙−1𝑘=0 ∈ ℝ and weights (𝑤 𝑙

𝑘)𝑚𝑙−1𝑘=0 ∈ ℝ
with 𝑚0 = 1, 𝑦00 = 0, 𝑤00 = 1 and 𝑚𝑙 < 𝑚𝑙+1. For a Banach space 𝑆 and an 𝑆-valued function
𝑓 ∈ 𝐿2(ℝ, 𝑆, 𝑔(𝑦)𝑑𝑦) = 𝐿2(ℝ, 𝑔(𝑦)𝑑𝑦) ⊗ 𝑆, where 𝑔(𝑦) = (2𝜋)−1/2 exp(−𝑦2/2) is the standard
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univariate Gaussian density, we approximate 𝔼[𝑓 ] using the quadrature operator at level 𝑙

𝒬𝑙[𝑓 ] =
𝑚𝑙−1
∑
𝑘=0

𝑤 𝑙
𝑘𝑓 (𝑦 𝑙𝑘), (4.1.2)

with the convention that 𝒬−1[𝑓 ] = 0.
Remark 4.1.1. The points and weights are obtained by a quadrature rule that is suitable for
integrals with Gaussian measure such as the Gauss-Hermite, Genz-Keister and exponentially
weighted Leja sequences1. The specific choice affects the quality (stability, convergence) of
the approximation and the computational cost (growth of points and nested or non-nested).
Note that the Gauss-Hermite rule is non-nested2 while Genz-Keister and weighted Leja are
nested rules.

We also make the following assumption regarding the quadrature approximation.

Assumption 4.1.1. (cf. Chen [35, Assumption 1])

𝔼[𝑓 ] = 𝒬𝑙(𝑓 ), ∀𝑓 ∈ ℙ𝑙 ⊗ 𝑆, (4.1.4)

where ℙ𝑙 = span{𝑦𝑖 , 0 ≤ 𝑖 ≤ 𝑙} and

|𝒬𝑙(𝐻𝑛)| ≤ 1, ∀𝑙 ≥ 0 and ∀𝑛 ≥ 𝑙, (4.1.5)

where 𝐻𝑛 are the Hermite polynomials, orthonormal in 𝐿2(ℝ, 𝑔(𝑦)𝑑𝑦), defined as

𝐻𝑛(𝑦) =
(−1)𝑛𝑔(𝑛)(𝑦)
√𝑛!𝑔(𝑦) . (4.1.6)

The condition in eq. (4.1.4) is satisfied by Gauss-Hermite and Genz-Keister rules for𝑚𝑙 =
𝑙 + 1 but is not satisfied in general by the weighted Leja rule. As is known, Gauss-Hermite
quadrature with 𝑚 points is exact for polynomials of degree up to 2𝑚 − 1. The bound in

1Weighted Leja sequences of points are introduced in Narayan and Jakeman [124]. They are defined anal-
ogously to Leja sequences in [−1, 1], i.e. the (𝑛 + 1) weighted Leja point is obtained as the solution to the
optimisation problem

𝑦𝑛+1 = argmax
𝑦∈𝑈 √𝑤(𝑦)

𝑁
∏
𝑛=0

|𝑦 − 𝑦𝑛 |, (4.1.3)

where 𝑤(𝑦) is a suitable weight function, e.g. 𝑤(𝑦) = exp(−𝑦2) for 𝑈 = (−∞,∞), and the starting point arbitrar-
ily chosen in 𝑈 (therefore the sequences are not unique). The Leja points are nested interpolating sequences
and they have the property that they greedily maximise the determinant of the corresponding Vandermonde
matrix. The points produced are asymptotically distributed as Gauss quadrature rules with weight 𝑤 .

2A nested quadrature rule has (𝑦 𝑙
𝑘) ⊂ (𝑦 ̃𝑙

𝑘) for all ̃𝑙 > 𝑙
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Fig. 4.1 Top: sparse grids in two dimensions, bottom: corresponding index sets Λ. Each
column corresponds to a quadrature rule, an index set and a function 𝑚𝑙 assigning levels to
number of points. “Iso” means isotropic and “Anis” means anisotropic in the two dimensions.
Figure generated by use of the Sparse Grids Matlab kit (http://csqi.epfl.ch [19]).

eq. (4.1.5) (see also [75] for a more general condition) has been verified numerically for Gauss-
Hermite and Genz-Keister quadrature for all possible 𝑙 and 𝑛 up to machine precision (see
Chen [35]). We have also verified it for the weighted Leja rule up to 𝑙 = 70 and 𝑛 = 200
with precision equal to 256 digits. Alternatively a relaxed version of eq. (4.1.5), given by
|𝒬𝑙(𝐻𝑛)| ≤ 2, has been proven in Chen [35] for the Gauss-Hermite rule.

In the multivariate case, for 𝝂 ∈ ℱ we define a Cartesian product grid

𝐺𝝂 = ∏
𝑗≥1

(𝑦𝜈𝑗𝑘𝑗 )
𝑚𝜈𝑗−1
𝑘𝑗=0 ⊂ 𝑈 , (4.1.7)

and the generalised sparse grid as
𝐺Λ = ⋃

𝝂∈Λ
𝐺𝝂 . (4.1.8)

The associated SQ approximation to 𝔼[𝑓 ] for some function 𝑓 ∈ 𝐿2(𝑈 , 𝑆, 𝛾𝐺) is given by

𝒬Λ[𝑓 ] = ∑
𝝂∈Λ

Δ𝝂 [𝑓 ], (4.1.9)

http://csqi.epfl.ch
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where Δ𝝂 are the tensorised, multivariate quadrature difference operators defined as

Δ𝝂 [𝑓 ] = ⨂
𝑗≥1

Δ𝜈𝑗 [𝑓 ] = ⨂
𝑗≥1

(𝒬𝜈𝑗 − 𝒬𝜈𝑗−1)[𝑓 ] =
𝝂−𝝁=𝟏
∑

𝝂−𝝁=𝟎
(−1)|𝝂−𝝁|𝒬𝝁[𝑓 ], (4.1.10)

and where the tensorised, multivariate quadrature operators are

𝒬𝝂 [𝑓 ] = ⨂
𝑗≥1

𝒬𝜈𝑗 [𝑓 ] =
𝑚𝜈𝑗1−1
∑
𝑘𝑗1=0

…
𝑚𝜈𝑗𝑛 −1
∑
𝑘𝑗𝑛=0

𝑤𝜈𝑗1𝑘𝑗1 …𝑤𝜈𝑗𝑛𝑘𝑗𝑛 𝑓 (𝑦
𝜈𝑗1𝑘𝑗1 , … , 𝑦𝜈𝑗𝑛𝑘𝑗𝑛 ), (4.1.11)

where in the last term we used the convention that supp(𝝂) = (𝑗1, … , 𝑗𝑛) and that we set
𝑦𝑗 = 0 for 𝑗 ∉ supp(𝝂). Figure 4.1 shows different sparse grids and corresponding index
sets Λ in two dimensions, with different choices of univariate quadrature rules, index sets
and functions 𝑚𝑙 . For a level 𝑙, the tensor-product grid and quadrature are obtained using
Λ = {𝝂 ∶ ‖𝝂‖∞ ≤ 𝑙}, while the Smolyak grid and quadrature are obtained using Λ = {𝝂 ∶
‖𝝂‖1 ≤ 𝑙}. Note that the calculation in eq. (4.1.10) requires∏𝑗∈supp(𝝂)𝑚𝜈𝑗 evaluations of 𝑓 for
a nested rule or ∏𝑗∈supp(𝝂)(𝑚𝜈𝑗 + 𝑚𝜈𝑗−1) evaluations of 𝑓 for a non-nested rule. Non-nested
rules obviously require more evaluations, however, in the case of the Gauss-Hermite rule
this disadvantage is at least partially counterbalanced by the high accuracy of the quadrature.
Additionally, nodes and weights at level 𝑙 in the Gauss-Hermite rule may reappear at some
level 𝑙′ > 𝑙 for odd number of points. In any case, it is advantageous to recycle old evaluations
of 𝑓 when a node reappears. This is achieved in our implementation using a hash table of
previous evaluations, which can be searched quickly with 𝑂(1) operations.

Convergence of SQ

Since 𝑓 ∈ 𝐿2(𝑈 , 𝑆, 𝛾𝐺), we can use Hermite polynomials 𝐻𝝂 , that constitute a basis for
𝐿2(𝑈 , 𝛾𝐺), to write

𝑓 (𝐲) = ∑
𝝂∈ℱ

𝑓𝝂𝐻𝝂 (𝐲), 𝑓𝝂 = ∫𝑈
𝑓 (𝐲)𝐻𝜈(𝐲) 𝑑𝛾𝐺(𝐲), 𝐻𝝂 (𝐲) = ∏

𝑗≥1
𝐻𝜈𝑗 (𝑦𝑗). (4.1.12)

The best 𝑁 -term approximation is obtained by replacing ℱ with an index set Λ𝑁 with
#(Λ𝑛) = 𝑁 , which corresponds to the 𝑁 largest norms ‖𝑓𝝂 ‖𝑆 . The work in Bachmayr et
al. [17] proves that under certain conditions, best 𝑁 -term Hermite approximations converge
in 𝐿2(𝑈 , 𝑆, 𝛾𝐺) with dimension-independent rates. This is extended in Cohen and Migliorati
[56] to polynomial approximation in downward closed spaces (see also [46, 47, 53]). In our
case, we are interested in the closely related convergence of the SQ approximation. This is
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analysed in Chen [35], where a dimension independent rate is proven (a similar analysis for
generalised sparse grid interpolation appears in Ernst et al. [75]). In particular, the theorem
relies on assumption 4.1.1 and on the additional assumption

Assumption 4.1.2. (cf. Chen [35, Assumption 2]) Let 0 < 𝑝 < 1, 𝑞 = 𝑞(𝑝) = 2𝑝/(2 − 𝑝) and
𝑟 the smallest integer such that 𝑟 > 10/𝑞. Assume that there exists a positive sequence (𝜌𝑗)𝑗≥1
such that (𝜌−1𝑗 )𝑗≥1 ∈ 𝑙𝑞(ℕ) and additionally

∑
‖𝝁‖𝑙∞≤𝑟

𝝆2𝝁
𝝁! ∫𝑈

‖𝜕𝝁𝑓 (𝐲)‖2𝑆 𝑑𝛾𝐺(𝐲) < ∞. (4.1.13)

Note that here 𝑟 > 10/𝑞 instead of 𝑟 > 14/𝑞 in Chen [35] due to allowing the sharper
(numerically verified) bound in eq. (4.1.5).

Theorem 4.1.1. (Chen [35, Theorem 3.6]) Under assumption 4.1.1 and assumption 4.1.2, for any
𝑁 ∈ ℕ, there exists a downward closed index set Λ𝑁 ∈ ℱ , corresponding to the set of indices
with the 𝑁 smallest values of 𝑏𝝁 defined as

𝑏𝝁 = ∑
‖�̃�‖≤𝑟

(𝝁�̃�)𝝆
2�̃�, (4.1.14)

such that
‖𝔼[𝑓 ] − 𝒬Λ𝑁 [𝑓 ]‖𝑆 ≤ 𝐾(𝑁 + 1)−𝑠 , 𝑠 = 1

𝑝 − 1, (4.1.15)

where 𝐾 is independent of 𝑁 .

To prove theorem 4.1.1 applies for the model we are examining in this thesis with 𝑓 (𝐲) =
𝐄(𝐲) and 𝑆 = 𝑉 or 𝑓 (𝐲 = 𝑠(𝐲) = 𝑠(𝐄(𝐲)), 𝑠 ∈ 𝑉 ′ and 𝑆 = ℂ, we will employ a slightly modified
version of an assumption given in Bachmayr et al. [17]

Assumption 4.1.3. (cf. Bachmayr et al. [17, Theorem 1.2]) Let 0 < 𝑝 < 1, 𝑞 = 𝑞(𝑝) = 2𝑝/(2−𝑝).
Assume that there exists a positive sequence (𝜌𝑗)𝑗≥1 such that (𝜌−1𝑗 )𝑗≥1 ∈ 𝑙𝑞(ℕ) and additionally

sup
𝐱∈𝐷−

∞
∑
𝑗=1

𝜌𝑗 |𝜓𝑗(𝐱)| < ∞. (4.1.16)

If the above assumption 4.1.3 holds, then as discussed in Bachmayr et al. [17] for 0 < 𝑝 < 2,
the validity of assumption 3.3.1 follows and therefore the well-posedness of the parametric
problem and the finiteness of all moments of the solution are guaranteed.
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Theorem 4.1.2. If assumption 4.1.3 is satisfied for the parametric representation of the random
field conductivity in eq. (3.3.2), then assumption 4.1.2 is also satisfied with 𝑓 = 𝐄 and 𝑆 = 𝑉 for
the parametric model in eq. (3.3.6).

Proof. We start by finding an expression for the partial derivative 𝜕𝝁𝐄(𝐲) for 𝝁 = 𝐞𝑗 = (𝛿𝑖𝑗)𝑖≥1,
𝑗 ∈ ℕ as in Bachmayr et al. [17] and Cohen et al. [55]. We consider two solutions 𝐄(𝐲 + ℎ𝐞𝑗)
and 𝐄(𝐲) to problem eq. (3.3.6) with |ℎ| < 1, for the same source term and the same 𝜎∗, 𝜎0, 𝜎+
and define the function

𝐰ℎ(𝐲) =
𝐄(𝐲 + ℎ𝐞𝑗) − 𝐄(𝐲)

ℎ . (4.1.17)

so that limℎ→0𝐰ℎ = 𝜕𝝁𝐄. Subtracting the two variational formulations, we get

𝑎(𝐄(𝐲 + ℎ𝐞𝑗), 𝐯; 𝜎(𝐲 + ℎ𝐞𝑗)) − 𝑎(𝐄(𝐲), 𝐯; 𝜎(𝐲)) = 0, (4.1.18)

which leads to

𝑎(𝐰ℎ(𝐲), 𝑣; 𝜎(𝐲)) = 𝚤𝜔 ∫𝐷
𝜎(𝐲 + ℎ𝐞𝑗) − 𝜎(𝐲)

ℎ 𝐄(𝐲 + ℎ𝐞𝑗) ⋅ 𝐯 𝑑𝐱 = 𝑙ℎ(𝐯). (4.1.19)

If 𝑙0(𝐯) = 𝚤𝜔(𝜕𝝁𝜎(𝐲)𝐄(𝐲), 𝐯)𝐿2(𝐷,ℂ3), then using proposition 2.2.3 we have

|𝑙ℎ(𝐯) − 𝑙0(𝐯)| = 𝜔 |||∫𝐷
(𝜎(𝐲 + ℎ𝐞𝑗) − 𝜎(𝐲)

ℎ 𝐄(𝐲 + ℎ𝐞𝑗) − 𝜕𝝁𝜎(𝐲)𝐄(𝐲)) ⋅ 𝐯 𝑑𝐱||| (4.1.20)

≤ 𝐾𝜔 (‖‖‖
𝜎(𝐲 + ℎ𝐞𝑗) − 𝜎(𝐲)

ℎ
‖‖‖𝐿∞(𝐷)

‖‖𝐄(𝐲 + ℎ𝐞𝑗) − 𝐄(𝐲)‖‖𝑉 (4.1.21)

+ ‖‖‖
𝜎(𝐲 + ℎ𝐞𝑗) − 𝜎(𝐲)

ℎ − 𝜕𝝁𝜎(𝐲)‖‖‖𝐿∞(𝐷)
‖𝐄(𝐲)‖𝑉) ‖𝐯‖𝑉 (4.1.22)

≤ 𝐾𝜔 ( 𝜔‖𝑓 ‖𝑉 ∗

min(𝛼(𝐲), 𝛼(𝐲 + ℎ𝐞𝑗))2
‖‖‖
𝜎(𝐲 + ℎ𝐞𝑗) − 𝜎(𝐲)

ℎ
‖‖‖𝐿∞(𝐷)

‖𝜎(𝐲 + ℎ𝐞𝑗) − 𝜎(𝐲)‖𝐿∞(𝐷) (4.1.23)

+ ‖‖‖
𝜎(𝐲 + ℎ𝐞𝑗) − 𝜎(𝐲)

ℎ − 𝜕𝝁𝜎(𝐲)‖‖‖𝐿∞(𝐷)
‖𝑓 ‖𝑉 ∗

𝛼(𝐲) ) ‖𝐯‖𝑉 → 0 as ℎ → 0 (4.1.24)

which shows that, under our assumptions on 𝜎 , 𝑙ℎ → 𝑙0 in 𝑉 ∗ as ℎ → 0. So the partial
derivative 𝜕𝝁𝐄(𝐲) ∈ 𝑉 is the solution to

𝑎(𝜕𝝁𝐄(𝐲), 𝐯; 𝜎(𝐲)) = 𝚤𝜔 ∫𝐷
𝜕𝝁𝜎(𝐲)𝐄(𝐲) ⋅ 𝐯 𝑑𝐱, 𝝁 = 𝐞𝑗 , ∀𝐯 ∈ 𝑉 , (4.1.25)
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and by recursion it follows that

𝑎(𝜕𝝁𝐄(𝐲), 𝐯; 𝜎(𝐲)) = 𝚤𝜔 ∑
𝝂≤𝝁
𝝂≠𝝁

(𝝁𝝂)∫𝐷
𝜕𝝁−𝝂𝜎(𝐲)𝜕𝝂𝐄(𝐲) ⋅ 𝐯 𝑑𝐱, 𝝁, 𝝂 ∈ ℱ . (4.1.26)

The partial derivatives of the parameter are given by

𝜕𝝁−𝝂𝜎(𝐲) = 𝜒𝐷−(𝜎(𝐲) − 𝜎∗)𝝍𝝁−𝝂 , 𝝍𝝁−𝝂 = ∏
𝑗≥1

𝜓 𝜇𝑗−𝜈𝑗
𝑗 (4.1.27)

which leads to the bound (see e.g. Graham et al. [83])

‖‖‖
𝜕𝝁−𝝂𝜎(𝐲)
𝜎(𝐲)

‖‖‖𝐿∞(𝐷)
≤ ‖𝝍‖𝝁−𝝂𝐿∞(𝐷). (4.1.28)

Recalling the continuity and coercivity of the sesquilinear form gives

𝛼(𝐲)‖𝐮(𝐲)‖2𝑉 ≤ |𝑎(𝐮(𝐲), 𝐮(𝐲); 𝜎(𝐲))| ≤ 𝛾(𝐲)‖𝐮(𝐲)‖2𝑉 . (4.1.29)

We define an equivalent 𝐿2 norm for any strictly positive function 𝑧 by

‖𝐮‖2𝐿2(𝐷,ℂ3,𝑧) = ∫𝐷
𝑧𝐮 ⋅ 𝐮 𝑑𝐱 = ‖√𝑧𝐮‖2𝐿2(𝐷,ℂ3). (4.1.30)

Notice that

‖𝐮(𝐲)‖𝐿2(𝐷,ℂ3,𝜎(𝐲)) ≤
1
√𝜔

||𝑎(𝐮(𝐲), 𝐮(𝐲); 𝜎(𝐲))||
1/2 ≤ √

𝛾(𝐲)
𝜔 ‖𝐮(𝐲)‖𝑉 . (4.1.31)
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We use eq. (4.1.29), eq. (4.1.31), eq. (4.1.26), eq. (4.1.28) and the Cauchy-Schwarz inequality to
get (analogously to relation 77 in [17])

‖𝜕𝝁𝐄(𝐲)‖2𝑉 ≤ 1
𝛼(𝐲) |𝑎(𝜕

𝝁𝐄(𝐲), 𝜕𝝁𝐄(𝐲); 𝜎(𝐲))| (4.1.32)

≤ 𝜔
𝛼(𝐲)

||||||
∑
𝝂≤𝝁
𝝂≠𝝁

(𝝁𝝂)∫𝐷
𝜕𝝁−𝝂𝜎(𝐲)𝜕𝝂𝐄(𝐲) ⋅ 𝜕𝝁𝐄(𝐲) 𝑑𝐱

||||||
(4.1.33)

≤ 𝜔
𝛼(𝐲) ∑𝝂≤𝝁

𝝂≠𝝁
(𝝁𝝂)

‖‖‖
𝜕𝝁−𝝂𝜎(𝐲)
𝜎(𝐲)

‖‖‖𝐿∞(𝐷)
|||∫𝐷 √𝜎(𝐲)√𝜎(𝐲)𝜕𝝂𝐄(𝐲) ⋅ 𝜕𝝁𝐄(𝐲) 𝑑𝐱

||| (4.1.34)

≤ 𝜔
𝛼(𝐲) ∑𝝂≤𝝁

𝝂≠𝝁
(𝝁𝝂)‖𝝍‖

𝝁−𝝂
𝐿∞(𝐷)‖𝜕𝝂𝐄(𝐲)‖𝐿2(𝐷,ℂ3,𝜎)‖𝜕𝝁𝐄(𝐲)‖𝐿2(𝐷,ℂ3,𝜎) (4.1.35)

≤ 𝐾𝝁
𝛾(𝐲)
𝛼(𝐲)‖𝜕

𝝁𝐄(𝐲)‖𝑉 ∑
𝝂≤𝝁
𝝂≠𝝁

‖𝜕𝝂𝐄(𝐲)‖𝑉 , (4.1.36)

with constant 𝐾𝝁 = max𝝂≤𝝁
𝝂≠𝝁

‖𝝍‖𝝁−𝝂𝐿∞(𝐷)(
|𝝁|

⌊|𝝁|/2⌋)
#(supp(𝝁))

> 0, where ⌊⋅⌋ denotes the floor func-

tion. We can apply this relation recursively to arrive at

‖𝜕𝝁𝐄(𝐲)‖𝑉 ≤ 𝐾𝝁 (
𝛾(𝐲)
𝛼(𝐲))

|𝝁| ‖𝑓 ‖𝑉 ∗

𝛼(𝐲) , 𝝁 ∈ ℱ , (4.1.37)

which according to our assumptions on 𝜎 , guarantees the finiteness of ‖𝜕𝝁𝐄(𝐲)‖𝐿𝑝(𝑈 ,𝑉 ) for
0 ≤ 𝑝 < ∞.

Now we prove that an analogue to [17, Theorem 4.1] applies. For an integer 𝑟 ≥ 1 and a
sequence (𝜌𝑗)𝑗≥1 such that

sup
𝐱∈𝐷−

∞
∑
𝑗=1

𝜌𝑗 |𝜓𝑗(𝐱)| = 𝐾 < 𝐶(𝑟) = ln 2
√𝑟 , (4.1.38)

there exists a constant 𝐶(𝐾, 𝑟) such that

∑
‖𝝁‖𝑙∞≤𝑟

𝝆2𝝁
𝝁! |𝑎(𝜕

𝝁𝐄(𝐲), 𝜕𝝁𝐄(𝐲); 𝜎(𝐲))| ≤ 𝐶(𝐾, 𝑟)|𝑎(𝐄(𝐲), 𝐄(𝐲); 𝜎(𝐲))|. (4.1.39)



4.1 Sparse Quadrature 69

The proof follows [17]; we describe here only the required changes. For 𝑘 ≥ 0 and

𝜂𝑘 = ∑
|𝝁|=𝑘

‖𝝁‖𝑙∞≤𝑟

𝝆2𝝁
𝝁! |𝑎(𝜕

𝝁𝐄(𝐲), 𝜕𝝁𝐄(𝐲); 𝜎(𝐲))|, (4.1.40)

it is only required to prove that 𝜂𝑘 ≤ 𝜂0𝛿𝑘 for a fixed 𝛿 < 1. Using the notation

𝜖(𝝁, 𝝂) = √𝝁!𝝆𝝁−𝝂 |𝝍|𝝁−𝝂
√𝝂!(𝝁 − 𝝂)! , (4.1.41)

we have from eq. (4.1.26) and the Cauchy-Schwarz inequality that

𝜂𝑘
𝜔 ≤∫

𝐷

∑
|𝝁|=𝑘

‖𝝁‖𝑙∞≤𝑟

⎛
⎜⎜
⎝
∑
𝝂≤𝝁
𝝂≠𝝁

𝜖(𝝁, 𝝂)𝜎(𝐲) |𝝆
𝝂𝜕𝝂𝐄(𝐲)|2

𝝂!
⎞
⎟⎟
⎠

1
2 ⎛
⎜⎜
⎝
∑
𝝂≤𝝁
𝝂≠𝝁

𝜖(𝝁, 𝝂)𝜎(𝐲) |𝝆
𝝁𝜕𝝁𝐄(𝐲)|2

𝝁!
⎞
⎟⎟
⎠

1
2

𝑑𝐱. (4.1.42)

Defining also

𝜏𝑘 = ∑
|𝝁|=𝑘

‖𝝁‖𝑙∞≤𝑟

𝝆2𝝁
𝝁! ‖𝜕

𝝁𝐄(𝐲)‖2𝐿2(𝐷,ℂ3,𝜎), (4.1.43)

and following the steps in [17] leads to

𝜂𝑘
𝜔 ≤ (

𝑘−1
∑
𝑙=0

(√𝑟𝐾)𝑘−𝑙
(𝑘 − 𝑙)! 𝜏𝑙)

1/2

𝜏1/2𝑘 . (4.1.44)

Noticing that 𝜏𝑘 ≤ 𝜂𝑘
𝜔 and following the last arguments in [17, Theorem 4.1] completes the

proof.
Finally, we prove that assumption 4.1.2 applies, i.e. given 0 < 𝑝 < 1, 𝑞 = 2𝑝/(2 − 𝑝),

𝑟 > 10/𝑞 and a positive sequence 𝝆 = (𝜌𝑗)𝑗≥1 such that (𝜌−1𝑗 )𝑗≥1 ∈ 𝑙𝑞(ℕ), there holds

∑
‖𝝁‖𝑙∞≤𝑟

𝝆2𝝁
𝝁! ∫𝑈

‖𝜕𝝁𝐄(𝐲)‖2𝑉 𝑑𝛾𝐺(𝐲) < ∞. (4.1.45)
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Assuming an integer 𝑟 ≥ 1 and a positive sequence (𝜌𝑗)𝑗≥1 such that eq. (4.1.38) holds, we
start from eq. (4.1.29), integrate over 𝑈 and sum over ‖𝝁‖𝑙∞ ≤ 𝑟 to obtain

∑
‖𝝁‖𝑙∞≤𝑟

𝝆2𝝁
𝝁! ∫𝑈

‖𝜕𝝁𝐄(𝐲)‖2𝑉 𝑑𝛾𝐺(𝐲) (4.1.46)

≤ ∫
𝐷

1
𝛼(𝐲) ( ∑

‖𝝁‖𝑙∞≤𝑟

𝝆2𝝁
𝝁! |𝑎(𝜕

𝝁𝐄(𝐲), 𝜕𝝁𝐄(𝐲); 𝜎(𝐲))|) 𝑑𝛾𝐺(𝐲) (4.1.47)

≤ 𝐶(𝐾, 𝑟) ∫𝑈
1

𝛼(𝐲) |𝑎(𝐄(𝐲), 𝐄(𝐲); 𝜎(𝐲))| 𝑑𝛾𝐺(𝐲) (4.1.48)

≤ 𝐶(𝐾, 𝑟) ∫𝑈
𝛾(𝐲)
𝛼(𝐲)‖𝐄(𝐲)‖

2𝑉 𝑑𝛾𝐺(𝐲) (4.1.49)

≤ 𝐶(𝐾, 𝑟)‖𝑓 ‖2𝑉 ∗ ∫𝑈
𝛾(𝐲)
𝛼(𝐲)3 𝑑𝛾𝐺(𝐲) < ∞, (4.1.50)

where the last term is finite due to our assumptions on 𝜎(𝐱, 𝐲) in section 3.3.
Since we assumed 𝑟 ≥ 1, we can choose 𝑟 to be smallest integer such that 𝑟 > 10/𝑞. Then

the assumption 𝑠𝑢𝑝𝐱∈𝐷− ∑
∞
𝑗=1 𝜌𝑗 |𝜓𝑗(𝐱)| < ∞ means up to multiplication with a constant that

eq. (4.1.38) holds and thus eq. (4.1.45) follows, proving the theorem.

Therefore, from theorem 4.1.1 we get the following result

Corollary 4.1.1. Assuming the validity of assumption 4.1.1 for the chosen quadrature rule and
assumption 4.1.2 for the parametric representation of the conductivity in eq. (3.3.2), theorem 4.1.1
applies for the estimation of the prior mean of the solution 𝐄 of eq. (3.3.6) as given in eq. (3.4.1).

Remark 4.1.2. In the case of a Gauss-Hermite, non-nested quadrature rule with𝑚𝑙+1 = 𝑚𝑙 +1,
we mention the results in Ernst et al. [75], which give the bound |𝐺Λ𝑁 | ≤ 𝑁 (𝑁 + 1)/2 for
the number of sparse grid points. This allows to express the convergence rate eq. (4.1.15) in
terms of the number points (or equivalently the number of function evaluations) as

‖𝔼[𝑓 ] − 𝒬Λ𝑁 [𝑓 ]‖𝑆 ≤ 𝐾|𝐺Λ𝑁 |− ̃𝑠 , ̃𝑠 = 1
2𝑝 − 1

2. (4.1.51)

For our choice of parametric representation through the Karhunen-Loève expansion, we
can see from eq. (3.1.31) that if 𝜈 > 3/𝑟 for some 0 < 𝑟 < 2/3, then (‖𝜓𝑗‖𝐿∞)𝑗≥1 ∈ 𝑙𝑟 (ℕ), and
we can choose 𝜌𝑗 = ‖𝜓𝑗‖𝑟−1𝐿∞ so that assumption 4.1.3 is satisfied and (𝜌−1𝑗 )𝑗≥1 ∈ 𝑙𝑞 , with 𝑞 =
𝑟/(1−𝑟). Then we obtain the convergence rate 𝑠 = 1

𝑟 −
3
2 . Therefore, the SQ approximation for

the parametric model is guaranteed to have a dimension independent convergence rate that
is better than the convergence rate 𝑂(𝑁 −1/2) of the Monte Carlo method when 0 < 𝑟 < 1/2
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or 𝜈 > 6. In practice the convergence may be faster since some of the bounds in the analysis
may not be sharp.

The construction of the index sets Λ can proceed in an a priori or a posteriori method.
An adaptive, a priori construction is proposed in Chen [35] and is based on the previous
analysis and the selection of the coefficients 𝑏𝜇 in eq. (4.1.14) with the smallest value among
a possible candidate set. In this thesis we focus instead on an a posteriori construction that is
based on the dimension-adaptive algorithm originally found in Gerstner and Griebel [78] (see
also Chkifa et al. [47] and Schillings and Schwab [143]). This heuristic algorithm identifies
important dimensions in𝑈 using a suitable a posteriori error indicator and proceeds to enrich
the index set accordingly.

We make use of the concepts of the (restricted to 𝐽 dimensions) margin, reduced margin
and neighbours of an index set (see e.g. [128]). The margin of an index set Λ is defined as

𝑀Λ = {𝝂 ∉ Λ ∶ ∃𝝁 ∈ Λ ∶ |𝝂 − 𝝁| = 1 and 𝜇𝑗 = 0, 𝜈𝑗 = 0, ∀𝑗 > 𝐽 }. (4.1.52)

The reduced margin is the subset of the margin of Λ defined as

𝑅Λ = {𝝂 ∉ Λ ∶ 𝝂 − 𝐞𝑗 ∈ Λ, ∀𝑗 ∈ supp(𝝂) and 𝜈𝑗 = 0, ∀𝑗 > 𝐽 }, (4.1.53)

i.e. it contains all the (restricted) indices 𝝂 such thatΛ∪{𝝂} remains downward closed. Finally,
the neighbours 𝑁(𝝁, Λ) of 𝝁 with respect to Λ are defined as

𝑁(𝝁, Λ) = {𝝂 ∉ Λ ∶ |𝝂 − 𝝁| = 1 and 𝜇𝑗 = 0, 𝜈𝑗 = 0, ∀𝑗 > 𝐽 }. (4.1.54)

Although we do not truncate a priori the parametric representation, the above definitions
make sense computationally only for some finite 𝐽 . We therefore start by considering the
neighbours for some chosen 𝐽 and when some dimension 𝑗 ≤ 𝐽 becomes active (i.e. when the
index with 𝜈𝑗 = 1 gets added to the index set), we extend the exploration of the candidate,
permissible indices to 𝐽 = 𝐽 + 1 dimensions.

Since in general, we have

‖𝔼[𝑓 ] − 𝒬Λ[𝑓 ]‖𝑆 ≤ ∑
𝝂∉Λ

‖Δ𝝂 [𝑓 ]‖𝑆 , (4.1.55)

we use ‖Δ𝝂 [𝑓 ]‖𝑆 as the error indicator for an index 𝝂 ∈ 𝑅Λ. The algorithm first assigns the
error contribution to every index in 𝑅Λ, then moves the index with the highest contribution
from 𝑅Λ toΛ, updates 𝑅Λ and finally proceeds to the next step. Note that we could also assign
awork contribution (e.g. number of additional points added to sparse grid) to each index in 𝑅Λ
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Algorithm 1: Dimension-adaptive SQ algorithm
Input: tolerance tol, maximum cardinality 𝑁max, starting truncation level 𝐽 ,

function 𝑓 (𝐲) = 𝑠(𝐄(𝐲));
Output: index sets Λ𝑁 , Λ̃𝑁 = Λ𝑁 ∪ 𝑅Λ𝑁 , quadratures 𝒬Λ𝑁 [𝑓 ], 𝒬Λ̃𝑁 [𝑓 ];

1 Initialise: 𝑁 = 1, 𝝂 = 𝟎, Λ𝑁 = Λ̃𝑁 = {𝟎}, 𝑅Λ𝑁 = {∅}, 𝐴 = 𝟎, ℰ = 2 ⋅ tol;
a) construct initial sparse grid 𝐺Λ𝑁 from eq. (4.1.8);
b) calculate initial SQ approximation 𝑄old = 𝒬Λ𝑁 [𝑓 ] as in eq. (4.1.9);

2 while 𝑁 < 𝑁max and ℰ > tol do
3 find 𝑁(𝝂, Λ𝑁 ) as in eq. (4.1.54);
4 for 𝝁 ∈ 𝑁(𝝂, Λ𝑁 ) and Λ𝑁 ∪ {𝝁} is downward closed do
5 Λ̃𝑁 = Λ̃𝑁 ∪ {𝝁}, 𝑅Λ𝑁 = 𝑅Λ𝑁 ∪ {𝝁};
6 evaluate 𝑄Λ̃𝑁 [𝑓 ];
7 compute profit 𝑃(𝝁) = (𝑄Λ̃𝑁 − 𝑄old)[𝑓 ], 𝑄old = 𝑄Λ̃𝑁 ;
8 end
9 choose 𝝉 from 𝑅Λ𝑁 with the highest profit and set 𝝂 = 𝝉 ;

// Check for dimension activation
10 if ∃𝑗 = 1, … , 𝐽 such that 𝐴𝑗 = 0 and 𝜏𝑗 > 0 then
11 𝐴𝑗 = 1, 𝐽 = 𝐽 + 1, Λ̃𝑁 = Λ̃𝑁 ∪ {𝐞𝐽 }, 𝑅Λ𝑁 = 𝑅Λ𝑁 ∪ {𝐞𝐽 };
12 compute profit 𝑃(𝐞𝐽 ) = (𝑄Λ̃𝑁 − 𝑄old)[𝑓 ], 𝑄old = 𝑄Λ̃𝑁 ;
13 𝝂 = argmax [max(𝑃(𝝉), 𝑃(𝐞𝐽 ))];
14 end
15 Λ𝑁+1 = Λ𝑁 ∪ {𝝂}, 𝑅Λ𝑁+1 = 𝑅Λ𝑁 \{𝝂}, Λ̃𝑁+1 = Λ̃𝑁 , ℰ = 𝑃(𝝂), 𝑁 = 𝑁 + 1;
16 end

and then choose the index with the highest profit (error contribution/work contribution) by
solving a knapsack problem. For completeness, we report the dimension-adaptive algorithm
in algorithm 1 that is based on the algorithms in [128].

Remark 4.1.3. Note that the algorithm requires the exploration of the reduced margin 𝑅Λ of
Λ. Since in general we wouldn’t want to discard function evaluations, the output can be con-
sidered to be the index set Λ̃ = Λ∪𝑅Λ and the associated quadrature. The theoretical estimate,
however, does indeed refer to the index set Λ since this captures the largest contributions.

4.1.1 SQ for the Bayesian Inverse Problem

The analysis in the previous section is directly applicable to any linear bounded operator 𝑠,
for example 𝑠 = 𝒪 ∶ 𝑉 → ℂ𝐾 which models 𝐾 measurements, since ‖𝑠(𝐄)‖ ≤ ‖𝑠‖𝐿(𝑉 ,ℂ𝐾 )‖𝐄‖𝑉 .
For simple non-linear integrands such as 𝑧(𝐲) = 𝑠2(𝐲), the analysis can be extended using
the generalised multi-variate Faà di Bruno formula [60, 118] for compound functions. In the
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Bayesian inverse problem, the estimation of integrals as in eq. (3.4.14) is required, i.e. the
integrand is of the type 𝑧(𝐲) = 𝑠(𝐲) exp(−𝐻(𝐲)). We expect that the validity of theorem 4.1.1
is possible to be proven also in this case (see e.g. Scheichl et al. [141, Appendix A] for an
analogous case).

SQ Preconditioning

As mentioned in section 3.4.2, the factor exp(−𝐻) appearing in the integral associated with
the Bayesian inverse problem affects the convergence properties of the Sparse Quadrature
method since in general there is a dependence of the type exp(1/Γ) in the error bounds
(see Schillings and Schwab [142–144]) that renders the SQ approach numerically unstable.
Specifically, in the small noise limit Γ → 0 or in the large sample size 𝐾 → ∞, the fac-
tor exp(−𝐻) becomes exponentially small in all of the parameter space 𝑈 , except for small
regions where the posterior measure concentrates. Therefore, a preconditioning strategy is
proposed in Schillings and Schwab [142] that amounts to a curvature-rescaled SQ. Starting
from eq. (3.4.17) which shows that as Γ → 0 there is a finite limit value of the posterior mean
given by the value of 𝑠 at the MAP point 𝐲0, the curvature-rescaled SQ method transforms
the parameter domain coordinates by a translation of the origin to the MAP point and a ro-
tation based on the Hessian 𝐼𝐲𝐲 of the Onsager-Machlup functional in eq. (3.4.16) (restricted
to a finite number of dimensions 𝐽 ), evaluated at the MAP point. Since the Hessian 𝐼𝐲𝐲 is
symmetric positive-definite, using an eigen-decomposition we can write 𝐼𝐲𝐲𝑄 = 𝑄𝐷, with 𝑄
an orthogonal matrix with the eigenvectors in its columns and 𝐷 the diagonal matrix of the
eigenvalues. Then the translated, rescaled coordinates �̃� are given by the map

𝐲 = 𝑇(�̃�) = �̃� + 𝑄𝐷−1/2�̃�, (4.1.56)

so that the adaptive SQ approach can now be applied in these new coordinates �̃� defined on
the measure space (𝑈 ,ℬ(𝑈 ), 𝛾𝐺), resulting in a numerically stable approximation as Γ → 0.

Remark 4.1.4. An alternative, equivalent view of the Hessian based adaptive SQ is offered in
[42]. The approach proposed there starts from adopting a Gaussian approximation 𝑁(𝐲0, 𝒞1)
at the MAP point 𝐲0 with covariance operator given by the inverse of the Hessian i.e. 𝒞1 =
(𝐼𝐲𝐲(𝐲0))−1. Then a KL expansion of 𝒞1 offers the new coordinates �̃� which can be used to
estimate the integrals in adaptive SQ. This formulation is in theory equivalent to the above
but in practice the results might differ since the discretisation and dimension truncation
operations are taken in different steps of the computational procedure.
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4.2 Model Reduction for Forward UQ

In this section, we describe additional approximations with the aim of further reducing the
computational cost for the approximation of the QoIs for problems where 𝑁ℎ is large. Our
framework follows the ideas proposed in Benner and Schneider [25] and Chen and Quar-
teroni [36] for forward UQ and also in Chen and Schwab [40, 41] for the Bayesian inverse
problem.

We obtain the so-called High Fidelity (Hi-Fi) solutions to eq. (3.3.6) by the Finite Element
Method (FEM) on a tetrahedral mesh 𝒯ℎ for the domain 𝐷. In particular, as described in
section 2.3 for the deterministic problem, we use a finite element space 𝑉ℎ with dim(𝑉ℎ) = 𝑁ℎ,
that is spanned by the lowest-order Nédélec curl-conforming edge elements 𝐍𝑖 . The FEM
approximation 𝐄ℎ(𝐲) = ∑𝑁ℎ

𝑗=1 𝑒𝑗ℎ(𝐲)𝐍𝑗 is obtained by solving the discrete variational problem:
given any 𝐲 ∈ 𝑈 , find 𝐄ℎ(𝐲) ∈ 𝑉ℎ such that

𝑎(𝐄ℎ(𝐲), 𝐯ℎ; 𝜎(𝐲)) = 𝑠(𝐄ℎ(𝐲), 𝐯ℎ) − 𝚤𝜔𝑚(𝐄ℎ(𝐲), 𝐯ℎ; 𝜎(𝐲))
= 𝑠(𝐄ℎ(𝐲), 𝐯ℎ) − 𝚤𝜔𝑚(𝐄ℎ(𝐲), 𝐯ℎ; 𝜎+𝜒𝐷+) − 𝚤𝜔𝑚(𝐄ℎ(𝐲), 𝐯ℎ; 𝜎−(𝐲)𝜒𝐷−)
= 𝑓 (𝐯ℎ), ∀𝐯ℎ ∈ 𝑉ℎ, (4.2.1)

which translates into the following symmetric, non-hermitian, indefinite and sparse linear
system

Aℎ(𝐲)𝐞ℎ(𝐲) = (S − 𝚤𝜔M+ − 𝚤𝜔M(𝐲))𝐞ℎ(𝐲) = 𝐛, (4.2.2)

with

(S)𝑖𝑗 = 𝑠(𝐍𝑗 , 𝐍𝑖), 𝑖, 𝑗 = 1, … , 𝑁ℎ, (4.2.3)
(M+)𝑖𝑗 = 𝑚(𝐍𝑗 , 𝐍𝑖 ; 𝜎+𝜒𝐷+), 𝑖, 𝑗 = 1, … , 𝑁ℎ, (4.2.4)

(M(𝐲))𝑖𝑗 = 𝑚(𝐍𝑗 , 𝐍𝑖 ; 𝜎−(𝐲)𝜒𝐷−), 𝑖, 𝑗 = 1, … , 𝑁ℎ, (4.2.5)
(𝐛)𝑖 = 𝑓 (𝐍𝑖), 𝑖 = 1, … , 𝑁ℎ. (4.2.6)

Remark 4.2.1. We assume in the following that the Hi-Fi model and solutions is sufficiently
accurate and close to the abstract weak solution. Therefore, we ignore the error introduced
by the numerical approximation.

Although as we have seen in the previous section, SQ can achieve dimension independent
rates, the computational cost is still high when a large number of linear solves to eq. (4.2.2)
is required and 𝑁ℎ is large. For this reason, we employ a (projection-based) model reduc-
tion to obtain a Low-Fidelity (Low-Fi) representation of eq. (4.2.2) on a subspace 𝑉𝑁𝑃 ⊂ 𝑉ℎ
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with dim(𝑉𝑁𝑃 ) = 𝑁𝑃 ≪ 𝑁ℎ. Thus, we replace the Hi-Fi model in the calculation of the QoI
with a Low-Fi model, with controlled levels of accuracy and computational cost. As we de-
scribe in the next sections, the resulting reduced model is affine and allows the calculation
of all 𝐲-independent, 𝑁ℎ-dimensional quantities during an offline phase and the fast online
evaluation of the solution for any 𝐲 using only 𝑁𝑃 -dimensional expressions.

As a preliminary step, we define the parametrised set 𝒳 = {𝜎−(⋅, 𝐲) ∶ 𝐲 ∈ 𝑈 } ⊂ 𝐶(𝐷−) ⊂
𝐿∞(𝐷−) and the solution manifold ℳ = {𝐄(⋅, 𝐲) ∶ 𝐲 ∈ 𝑈 } ⊂ 𝐻(curl; 𝐷). We will use model re-
duction schemes with the goal of finding approximations to these sets. Since the underlying
parameter space 𝑈 is not compact, we will seek approximations as measured in a weighted
norm. The rationale behind this approach is based on i) the fast decay of the Kolmogorov 𝑛-
width, or more appropriate in our case, the p-average 𝑛-widths3 of the particular sets and the
regularity and anisotropy of the maps with respect to 𝐲 (see e.g. [66, 133]) and on ii) (weak)
greedy algorithms that have been shown in [27, 67] to achieve approximation rates compa-
rable to the benchmark rates given by the Kolmogorov 𝑛-widths. In the following sections,
which describe the model reduction methods, we view the domain 𝑈 as finite-dimensional,
i.e. restricted to the 𝐽 active dimensions. With this in mind, we will use the weight func-
tion 𝝅(𝐲) = ⊗𝐽𝑗=1√exp(−𝑦

2𝑗 /2) in our formulation, i.e. we employ weighted variants of model
reduction methods, taking into account explicitly the underlying Gaussian measure.

4.2.1 Affine Representation by EIM

Theparametric representation eq. (3.3.2) has the disadvantage that is non-linear and therefore
non-separable in the spatial and parametric domain. This poses a problem for the efficient
application of model reduction methods and in particular for the offline-online decomposi-
tion. To overcome this issue, we will employ the (weighted) Empirical Interpolation Method
(EIM) (see [20, 99, 133] and [37] for the weighted variant) to achieve an affine approximation

3The Kolmogorov 𝑛-width gives a measure of how well a subset 𝐾 of a normed linear space 𝑋 can be
approximated by 𝑛-dimensional subspaces of 𝑋 . It is defined as

𝑑𝑛(𝐾)𝑋 = inf𝑋𝑛⊂𝑋
dim𝑋𝑛=𝑛

sup
𝑣∈𝐾

inf𝑤∈𝑋𝑛
‖𝑣 − 𝑤‖𝑋 . (4.2.7)

The p-average 𝑛-width is defined for 𝐾 = 𝑣(𝑈 ) as

𝛿 (𝑝)𝑛 (𝐾, 𝜇)𝑋 = inf𝑋𝑛⊂𝑋
dim𝑋𝑛=𝑛

(∫
𝑈

inf𝑤∈𝑋𝑛
‖𝑣 − 𝑤‖𝑝𝑋 𝑑𝜇)

1/𝑝
. (4.2.8)

In our case, for the squared average 𝑛-width ofℳ, we can directly use the best 𝑛-term Hermite approximation
theory from [17] to get the upper bound 𝛿 (2)𝑛 (ℳ, 𝛾𝐺)𝑉 ≤ 𝐾𝑛−𝑠 , with 𝑠 = 1/𝑝 − 1/2.
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for 𝜎−(⋅, 𝐲) ∈ 𝐶(𝐷−), ∀𝐲 ∈ 𝑈 , of the form

𝜎−(𝐱, 𝐲) ≈ ℐ 𝐱𝑁𝐼 [𝜎−(𝐱, 𝐲)] =
𝑁𝐼
∑
𝑗=1

𝜉𝑗(𝐲)𝑔𝑗(𝐱), 𝐱 ∈ 𝐷−, 𝐲 ∈ 𝑈 , (4.2.9)

where ℐ 𝐱𝑁𝐼 is the interpolation operator, with the superscript 𝐱 denoting that the interpola-
tion is performed in the spatial domain, (𝑔𝑗)𝑁𝐼𝑗=1 is the nested set of chosen basis functions,
and 𝜉𝑗(𝐲) are coefficient functions that are determined by the condition

ℐ 𝐱𝑁𝐼 [𝜎−(𝐭𝐢, 𝐲)] = 𝜎−(𝐭𝐢, 𝐲), 𝑖 = 1, … , 𝑁𝐼 , (4.2.10)

for some nested set of chosen points (𝐭𝐢)𝑁𝐼𝑖=1 ∈ 𝐷−. This condition results in the following
linear system

𝑁𝐼
∑
𝑗=1

𝑔𝑗(𝐭𝑖)𝜉𝑗(𝐲) = 𝜎−(𝐭𝑖 , 𝐲), 𝑖 = 1, … , 𝑁𝐼 , (4.2.11)

which can be shown to be uniquely solvable for 𝑁𝐼 ≤ 𝑁max𝐼 ≤ dim (span{𝒳}) if one picks
the basis functions and points according to the following greedy procedure: choose the first
point in 𝑈 as 𝐲1 = arg sup𝐲∈𝑈 [𝝅(𝐲)‖𝜎−(⋅, 𝐲)‖𝐿∞(𝐷−)] and the first interpolation point as 𝐭1 =
arg sup𝐱∈𝐷−

|𝜎−(𝐱, 𝐲1)|. Then define the first basis function as 𝑔1(𝐱) = 𝜎−(𝐱, 𝐲1)/𝜎−(𝐭1, 𝐲1). The
construction of the approximation proceeds at the 𝑁𝐼 -th step (until some a priori 𝑁𝐼 = 𝑁max𝐼
number of steps or until some tolerance tolEIM is achieved), by choosing the (𝑁𝐼 +1)-th point
in 𝑈 as

𝐲𝑁𝐼+1 = arg sup
𝐲∈𝑈

[𝝅(𝐲)𝜀𝜎−𝑁𝐼 (𝐲)] , (4.2.12)

𝜀𝜎−𝑁𝐼 (𝐲) = ‖𝜎−(⋅, 𝐲) − ℐ 𝐱𝑁𝐼 𝜎−(⋅, 𝐲)‖𝐿∞(𝐷−), (4.2.13)

and the (𝑁𝐼 + 1)-th interpolation point as

𝐭𝑁𝐼+1 = arg sup
𝐱∈𝐷−

|𝑟𝑁𝐼+1(𝐱)|, (4.2.14)

where 𝑟𝑁𝐼+1(𝐱) is the residual given by

𝑟𝑁𝐼+1(𝐱) = 𝜎−(𝐱, 𝐲𝑁𝐼+1) − ℐ 𝐱𝑁𝐼 𝜎−(𝐱, 𝐲𝑁𝐼+1). (4.2.15)
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Then the (𝑁𝐼 + 1) basis function is obtained by

𝑔𝑁𝐼+1(𝐱) =
𝑟𝑁𝐼+1(𝐱)

𝑟𝑁𝐼+1(𝐭𝑁𝐼+1) . (4.2.16)

We can also define an a posteriori error indicator as

Δ𝜎−𝑁𝐼 (𝐲) = |𝜎−(𝐭𝑁𝐼+1, 𝐲) − ℐ 𝐱𝑁𝐼 𝜎−(𝐭𝑁𝐼+1, 𝐲)|, (4.2.17)

and we can easily see that 𝜀𝜎−𝑁𝐼 (𝐲) ≥ Δ𝜎−𝑁𝐼 (𝐲). In practice, the optimisation problems in
eq. (4.2.12) and eq. (4.2.14) are replaced by discrete versions over a finite training set
𝑈train ⊂ 𝑈 and using a discrete approximation 𝐷ℎ ⊂ 𝐷−, thus relaxing the greedy algo-
rithm to its weak form. We will a priori choose 𝐷ℎ as the nodes of a mesh (the same mesh
that we use to solve the Karhunen-Loève eigenvalue problem). However, due to the high-
dimensionality of𝑈 , we will not a priori choose a training set; instead wewill use a collection
of training sets that are determined by the SQ algorithm as we detail in section 4.2.4.

Having obtained an affine approximation, the EIM, Hi-Fi, parametric problem becomes:
given 𝐲 ∈ 𝑈 , find 𝐄ℎ,𝑁𝐼 (𝐲) ∈ 𝑉ℎ such that

𝑎𝑁𝐼 (𝐄ℎ,𝑁𝐼 (𝐲), 𝐯ℎ; 𝜎(𝐲)) = 𝑠(𝐄ℎ,𝑁𝐼 (𝐲), 𝐯ℎ) − 𝚤𝜔𝑚(𝐄ℎ,𝑁𝐼 (𝐲), 𝐯ℎ; 𝜎+𝜒𝐷+) (4.2.18)

− 𝚤𝜔
𝑁𝐼
∑
𝑘=1

𝜉𝑘(𝐲)𝑚(𝐄ℎ,𝑁𝐼 (𝐲), 𝐯ℎ; 𝑔𝑘𝜒𝐷−)

= 𝑓 (𝐯ℎ), ∀𝐯ℎ ∈ 𝑉ℎ, (4.2.19)

or in algebraic form

Aℎ,𝑁𝐼 (𝐲)𝐞ℎ,𝑁𝐼 (𝐲) = (S − 𝚤𝜔M+ − 𝚤𝜔
𝑁𝐼
∑
𝑘=1

𝜉𝑘(𝐲)M𝑘) 𝐞ℎ,𝑁𝐼 (𝐲) = 𝐛, (4.2.20)

with
(M𝑘)𝑖𝑗 = 𝑚(𝐍𝑗 , 𝐍𝑖 ; 𝑔𝑘𝜒𝐷−), 𝑖, 𝑗 = 1, … , 𝑁ℎ, 𝑘 = 1, … , 𝑁𝐼 . (4.2.21)
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Aswe can see, the EIM approximation introduces the sesquilinear form 𝑎𝑁𝐼 andwe can derive
the estimate

‖𝑎(⋅, ⋅; 𝜎(𝐲)) − 𝑎𝑁𝐼 (⋅, ⋅; 𝜎(𝐲))‖ℒ(𝑉ℎ,𝑉 ∗
ℎ) (4.2.22)

= 𝜔 sup
𝐮ℎ∈𝑉ℎ\{0}

sup
𝐯ℎ∈𝑉ℎ\{0}

||𝑚 (𝐮ℎ, 𝐯ℎ; (𝜎−(𝐲) − ℐ 𝐱𝑁𝐼 [𝜎−(𝐲)])𝜒𝐷−)||
‖𝐮ℎ‖𝑉 ‖𝐯ℎ‖𝑉

(4.2.23)

≤ 𝜔𝜀𝜎−𝑁𝐼 (𝐲)𝛾𝑚 (4.2.24)

with
𝛾𝑚 = sup

𝐮𝐡∈𝑉ℎ\{0}
sup

𝐯𝐡∈𝑉ℎ\{0}

|𝑚 (𝐮𝐡, 𝐯𝐡)|
‖𝐮𝐡‖𝑉 ‖𝐯𝐡‖𝑉

= 1. (4.2.25)

However, this estimate is in most cases pessimistic. In our numerical examples, we will
instead use a non-rigorous approach that can be both computationally efficient and efficient
as an error estimator. This is obtained as

|𝑎(𝐮ℎ, 𝐯ℎ; 𝜎(𝐲)) − 𝑎𝑁𝐼 (𝐮ℎ, 𝐯ℎ; 𝜎(𝐲))| (4.2.26)
= |𝑎(𝐮ℎ, 𝐯ℎ; 𝜎(𝐲)) − 𝑎𝑁𝐼+𝑁𝐸 (𝐮ℎ, 𝐯ℎ; 𝜎(𝐲)) + 𝑎𝑁𝐼+𝑁𝐸 (𝐮ℎ, 𝐯ℎ; 𝜎(𝐲)) − 𝑎𝑁𝐼 (𝐮ℎ, 𝐯ℎ; 𝜎(𝐲))| (4.2.27)
≤ |𝑎𝑁𝐼+𝑁𝐸 (𝐮ℎ, 𝐯ℎ; 𝜎(𝐲)) − 𝑎𝑁𝐼 (𝐮ℎ, 𝐯ℎ; 𝜎(𝐲))|(1 + 𝜖(𝑁𝐸)) (4.2.28)
≈ |𝑎𝑁𝐼+𝑁𝐸 (𝐮ℎ, 𝐯ℎ; 𝜎(𝐲)) − 𝑎𝑁𝐼 (𝐮ℎ, 𝐯ℎ; 𝜎(𝐲))| ∶= 𝛿𝛼𝑁𝐼 ,𝑁𝐸 (𝐮ℎ, 𝐯ℎ; 𝐲), (4.2.29)

where 𝑁𝐸 denotes a sufficiently high number of terms in an auxiliary EIM approximation
such that 𝜖(𝑁𝐸) ∶= |𝑎 − 𝑎𝑁𝐼+𝑁𝐸 |/|𝑎𝑁𝐼+𝑁𝐸 − 𝑎𝑁𝐼 | ≪ 1.

4.2.2 Model Reduction by EIM-RB Approximation

Wenow describe the derivation of a Low-Fi representation of eq. (4.2.20) using the projection-
based (weighted) Reduced Basis method (RB) (see [38] for weighted version). Suppose we
have at hand a low-dimensional space 𝑉𝑁𝑃 ⊂ 𝑉ℎ, that is spanned by some basis functions
(𝐰𝑗)𝑁𝑃𝑗=1. Then we use the Galerkin RB4 to obtain the Low-Fi, EIM-RB parametric problem:
given 𝐲 ∈ 𝑈 , find 𝐄𝑁𝐼 ,𝑁𝑃 (𝐲) ∈ 𝑉𝑁𝑃 such that

𝑎𝑁𝐼 (𝐄𝑁𝐼 ,𝑁𝑃 (𝐲), 𝐯𝑁𝑃 ; 𝜎(𝐲)) = 𝑓 (𝐯𝑁𝑃 ), ∀𝐯𝑁𝑃 ∈ 𝑉𝑁𝑃 . (4.2.30)
4A more general approach would be the Ritz-Galerkin RB method, for which the test space is different from

the trial space (see e.g. [61]).
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By expressing the reduced basis in terms of the Hi-Fi space basis we get𝐰𝑗 = ∑𝑁ℎ
𝑘=1 𝑤𝑘𝑗 𝐍𝑘 for

𝑗 = 1, … , 𝑁𝑃 . We arrange the coefficients into the columns of a basis transformation matrix
(W)𝑖𝑗 = 𝑤 𝑖𝑗 , with 𝑖 = 1, … , 𝑁ℎ and 𝑗 = 1, … , 𝑁𝑃 and we use 𝐄𝑁𝐼 ,𝑁𝑃 (𝐲) = ∑𝑁𝑃

𝑘=1 𝑒𝑘𝑁𝐼 ,𝑁𝑃 (𝐲)𝐰𝑘 to
obtain the following Low-Fi, dense linear system

A𝑁𝐼 ,𝑁𝑃 (𝐲)𝐞𝑁𝐼 ,𝑁𝑃 (𝐲) = W𝐻 (S − 𝚤𝜔M+ − 𝚤𝜔
𝑁𝐼
∑
𝑘=1

𝜉𝑘(𝐲)M𝑘)W𝐞𝑁𝐼 ,𝑁𝑃 (𝐲) = W𝐻𝐛, (4.2.31)

where W𝐻 denotes the Hermitian conjugate of W. Again, we can store the 𝐲-independent
reduced matrices W𝐻SW, W𝐻M+W, W𝐻M𝑘W and the vector W𝐻𝐛 and access them when
assembling eq. (4.2.31).

In order to construct a basis for 𝑉𝑁𝑃 we use solutions (snapshots) of the Hi-Fi problem at
points (𝐲𝑛)𝑁𝑃𝑛=1 that are chosen iteratively by a greedy algorithm as the most representative
samples in some sense for the approximation of any function 𝑧(𝐲). Therefore, we have that

𝑉𝑁𝑃 = span{𝐄ℎ(𝐲𝑛), 1 ≤ 𝑛 ≤ 𝑁𝑃 } = span{𝐰𝑛, 1 ≤ 𝑛 ≤ 𝑁𝑃 }, (4.2.32)

where 𝐰𝑛 are obtained from 𝐄ℎ(𝐲𝑛) by Gram-Schmidt orthogonalisation with respect to the
𝑉 inner product. Using as before the weight 𝝅(𝐲) = ⊗𝐽𝑗=1√exp(−𝑦

2𝑗 /2), the goal-oriented
greedy algorithm starts from an initial parameter value 𝐲1 = arg sup𝐲∈𝑈 [𝝅(𝐲)|𝑧(𝐄ℎ(𝐲))|] and
we set 𝑉1 = span{𝐄ℎ(𝐲1)}, while also initialising the EIM approximation at 𝐲1. Then the con-
struction of the RB space and the enrichment of the EIM approximation proceeds at the 𝑁𝐼 ,𝑃 -
th step (until some a priori 𝑁𝐼 ,𝑃 = 𝑁max𝐼 ,𝑃 number of steps or until some tolerance tolEIM-RB is
achieved), by choosing the (𝑁𝐼 ,𝑃 + 1)-th point in 𝑈 as

𝐲𝑁𝐼 ,𝑃+1 = arg sup
𝐲∈𝑈

[𝝅(𝐲)𝜀𝑧𝑁𝐼 ,𝑁𝑃 (𝐲)] , (4.2.33)

𝜀𝑧𝑁𝐼 ,𝑁𝑃 (𝐲) = |𝑧(𝐄ℎ(𝐲)) − ̂𝑧𝑁𝐼 ,𝑁𝑃 (𝐲))|, (4.2.34)

where ̂𝑧𝑁𝐼 ,𝑁𝑃 is an EIM-RB representation for 𝑧. Once 𝐲𝑚+1 is determined we refine the EIM-
RB approximation by enriching the reduced space, i.e. setting 𝑉𝑁𝑃+1 = 𝑉𝑁𝑃 ⊕ span{𝐄ℎ(𝐲𝑚+1)},
and/or by enriching the EIM approximation at level 𝑁𝐼 + 1 as in eq. (4.2.14), eq. (4.2.16).

In practice, we replace the optimisation problem over 𝑈 with discrete versions over a
collection of training sets 𝑈train supplied by the adaptive SQ algorithm. Additionally, since
the evaluation of 𝜀𝑧𝑁𝐼 ,𝑁𝑃 (𝐲) is expensive (it requires the solution of Hi-Fi problems), we replace
it with an a posteriori error indicator Δ𝑧𝑁𝐼 ,𝑁𝑃 (𝐲) such that 𝜀𝑧𝑁𝐼 ,𝑁𝑃 (𝐲) ≤ Δ𝑧𝑁𝐼 ,𝑁𝑃 (𝐲), which we
detail in the next section.
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4.2.3 Goal-Oriented Error Estimator

We use a definition of Δ𝑧𝑁𝐼 ,𝑁𝑃 that is based on a goal-oriented primal-dual reduced basis for-
mulation similar to the approach in [89] (see also [40, 61, 99, 137]). For the approximation of
the mean of 𝑠, we have 𝑧 = 𝑠 and we define an associated dual problem as: given 𝐲 ∈ 𝑈 , find
𝐄du(𝐲) such that

𝑎∗(𝐄du(𝐲), 𝐯; 𝜎(𝐲)) = −𝑠(𝐯), ∀𝐯 ∈ 𝑉 , (4.2.35)

where 𝑎∗(𝐮, 𝐯) = 𝑎(𝐯, 𝐮) is the adjoint sesquilinear form. The Hi-Fi dual problem is given by:
find 𝐄du

ℎ (𝐲) ∈ 𝑉ℎ such that

𝑎(𝐯ℎ, 𝐄du
ℎ (𝐲); 𝜎(𝐲)) = −𝑠(𝐯ℎ), ∀𝐯ℎ ∈ 𝑉ℎ, (4.2.36)

or in algebraic form by
A𝐻
ℎ (𝐲)𝐞duℎ (𝐲) = −𝐜𝐻 , (4.2.37)

where 𝐜 is a row vector with components

(𝐜)𝑗 = 𝑠(𝐍𝑗), 𝑗 = 1, … , 𝑁ℎ. (4.2.38)

The corresponding EIM Hi-Fi dual problem with solution denoted as 𝐄du
ℎ,𝑁𝐼 is defined analo-

gously.

Remark 4.2.2. We choose to define the dual Hi-Fi problem on the same FEM space as the
primal Hi-Fi problem. Thus, we obtain the same matrix Aℎ(𝐲), a fact that can be exploited
when solving the dual Hi-Fi linear systems by e.g. using a factorisation of Aℎ(𝐲) obtained
from the primal problem. An alternative is to use different discretisations, adapted to the
two problems (see [43] for an analysis in this case).

We now construct a reduced dual space similar to the reduced primal space. Suppose we
have at hand the 𝑁𝐷-dimensional dual space 𝑉 du𝑁𝐷 ⊂ 𝑉ℎ, that is spanned by the basis functions
(𝐰du𝑗 )𝑁𝐷𝑗=1. If we denote the basis transformationmatrix asWdu, we obtain the Low-Fi, EIM-RB
dual problem: given 𝐲, find 𝐄𝑁𝐼 ,𝑁𝐷 (𝐲) ∈ 𝑉 du𝑁𝐷 such that

𝑎𝑁𝐼 (𝐯𝑁𝐷 , 𝐄du𝑁𝐼 ,𝑁𝐷 (𝐲); 𝜎(𝐲)) = −𝑠(𝐯𝑁𝐷 ), ∀𝐯𝑁𝐷 ∈ 𝑉 du𝑁𝐷 , (4.2.39)
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or in algebraic form

(Adu
𝑁𝐼 ,𝑁𝐷

(𝐲))
𝐻
𝐞du𝑁𝐼 ,𝑁𝐷 (𝐲) = W𝐻

du (S − 𝚤𝜔M+ − 𝚤𝜔
𝑁𝐼
∑
𝑘=1

𝜉𝑘(𝐲)M𝑘)
𝐻

Wdu𝐞du𝑁𝐼 ,𝑁𝐷 (𝐲) (4.2.40)

= −W𝐻
du𝐜𝐻 ,

where we used the expansion 𝐄du𝑁𝐼 ,𝑁𝐷 (𝐲) = ∑𝑁𝐷
𝑘=1 𝑒𝑘𝑁𝐼 ,𝑁𝐷 (𝐲)𝐰du

𝑘 . The construction of 𝑉 𝑑𝑢𝑁𝐷 pro-
ceeds as in the primal problem by using solutions of eq. (4.2.37) for the selected 𝐲. To specify
the a posteriori error indicator, we first need to define the primal residual as

𝑟pr𝑁𝐼 ,𝑁𝑃 (𝐯; 𝐲) = 𝑓 (𝐯) − 𝑎𝑁𝐼 (𝐄𝑁𝐼 ,𝑁𝑃 (𝐲), 𝐯; 𝜎(𝐲)), ∀𝐯 ∈ 𝑉 , (4.2.41)

and the dual residual as

𝑟du𝑁𝐼 ,𝑁𝐷 (𝐯; 𝐲) = −𝑠(𝐯) − 𝑎𝑁𝐼 (𝐯, 𝐄du𝑁𝐼 ,𝑁𝐷 (𝐲); 𝜎(𝐲)), ∀𝐯 ∈ 𝑉 . (4.2.42)

We also denote the primal and dual EIM-RB errors as 𝜺𝑁𝐼 ,𝑁𝑃 = 𝐄ℎ − 𝐄𝑁𝐼 ,𝑁𝑃 ∈ 𝑉ℎ and
𝜺du𝑁𝐼 ,𝑁𝐷 = 𝐄du

ℎ − 𝐄du𝑁𝐼 ,𝑁𝐷 ∈ 𝑉ℎ respectively. The EIM-RB, dual-corrected representation of 𝑧 = 𝑠
is defined as

̂𝑧𝑠𝑁𝐼 ,𝑁𝑃 ,𝑁𝐷 (𝐲) ∶= ̂𝑠𝑁𝐼 ,𝑁𝑃 ,𝑁𝐷 (𝐲) = 𝑠(𝐄𝑁𝐼 ,𝑁𝑃 (𝐲)) − 𝑟pr𝑁𝐼 ,𝑁𝑃 (𝐄du𝑁𝐼 ,𝑁𝐷 ; 𝐲), (4.2.43)

i.e. we add a correction term that exploits the additional information that the dual problem
is providing, leading to sharper error bounds. Using standard arguments, we have the (non-
rigorous due to the EIM approximate estimate) error estimate

‖𝜺𝑁𝐼 ,𝑁𝑃 (𝐲)‖𝑉 ≤ Δ𝐄𝑁𝐼 ,𝑁𝑃 (𝐲) ∶= Δ𝐄
EIM(𝐲) + Δ𝐄

RB(𝐲), (4.2.44)

with

Δ𝐄
EIM ∶=

‖𝛿𝑎𝑁𝐼 ,𝑁𝐸 (𝐄𝑁𝐼 ,𝑁𝑃 , ⋅; 𝐲)‖𝑉 ∗
ℎ

𝛼ℎ(𝐲)
, Δ𝐄

RB ∶=
‖𝑟pr𝑁𝐼 ,𝑁𝑃 (⋅; 𝐲)‖𝑉 ∗

ℎ
𝛼ℎ(𝐲)

, (4.2.45)

where 𝛼ℎ(𝐲) is the (best) discrete coercivity factor given by

𝛼ℎ(𝐲) = inf𝐯ℎ∈𝑉ℎ

|𝑎(𝐯𝐡, 𝐯𝐡; 𝜎(𝐲))|
‖𝐯𝐡‖2𝑉

. (4.2.46)
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Using an analogous expression for the dual error, setting 𝑧 = 𝑠 and omitting 𝐲-dependence,
we get (see also [89])

|𝑧(𝐄ℎ) − ̂𝑧𝑁𝐼 ,𝑁𝑃 ,𝑁𝐷 | = |𝑧(𝐄ℎ) − 𝑧(𝐄𝑁𝐼 ,𝑁𝑃 ) + 𝑓 (𝐄du𝑁𝐼 ,𝑁𝐷 ) − 𝑎𝑁𝐼 (𝐄𝑁𝐼 ,𝑁𝑃 , 𝐄du𝑁𝐼 ,𝑁𝐷 )| (4.2.47)

= |𝑠(𝜺𝑁𝐼 ,𝑁𝑃 ) + 𝑎(𝐄ℎ, 𝐄du𝑁𝐼 ,𝑁𝐷 ) − 𝑎𝑁𝐼 (𝐄𝑁𝐼 ,𝑁𝑃 , 𝐄du𝑁𝐼 ,𝑁𝐷 )| (4.2.48)

= | − 𝑎𝑁𝐼 (𝜺𝑁𝐼 ,𝑁𝑃 , 𝐄du
ℎ,𝑁𝐼 ) + 𝑎(𝐄ℎ, 𝐄du𝑁𝐼 ,𝑁𝐷 ) (4.2.49)

+ 𝑎𝑁𝐼 (𝜺𝑁𝐼 ,𝑁𝑃 , 𝐄du𝑁𝐼 ,𝑁𝐷 ) − 𝑎𝑁𝐼 (𝐄ℎ, 𝐄du𝑁𝐼 ,𝑁𝐷 )| (4.2.50)

= | − 𝑎𝑁𝐼 (𝜺𝑁𝐼 ,𝑁𝑃 , 𝜺du𝑁𝐷 ) + 𝑎(𝐄𝑁𝐼 ,𝑁𝑃 + 𝜺𝑁𝐼 ,𝑁𝑃 , 𝐄du𝑁𝐼 ,𝑁𝐷 ) (4.2.51)

− 𝑎𝑁𝐼 (𝐄𝑁𝐼 ,𝑁𝑃 + 𝜺𝑁𝐼 ,𝑁𝑃 , 𝐄du𝑁𝐼 ,𝑁𝐷 )| (4.2.52)

= | − 𝑟du𝑁𝐼 ,𝑁𝐷 (𝜺𝑁𝐼 ,𝑁𝑃 ; 𝐲) + 𝑎(𝐄𝑁𝐼 ,𝑁𝑃 , 𝐄du𝑁𝐼 ,𝑁𝐷 ) − 𝑎𝑁𝐼 (𝐄𝑁𝐼 ,𝑁𝑃 , 𝐄du𝑁𝐼 ,𝑁𝐷 ) (4.2.53)

+ 𝑎(𝜺𝑁𝐼 ,𝑁𝑃 , 𝐄du𝑁𝐼 ,𝑁𝐷 ) − 𝑎𝑁𝐼 (𝜺𝑁𝐼 ,𝑁𝑃 , 𝐄du𝑁𝐼 ,𝑁𝐷 )| (4.2.54)

≲ ‖𝑟du𝑁𝐼 ,𝑁𝐷 ‖𝑉 ∗
ℎ‖𝜺𝑁𝐼 ,𝑁𝑃 ‖𝑉 + 𝛿𝑎𝑁𝐼 ,𝑁𝐸 (𝐄𝑁𝐼 ,𝑁𝑃 , 𝐄du𝑁𝐼 ,𝑁𝐷 ; 𝐲) (4.2.55)

+ ‖𝜺𝑁𝐼 ,𝑁𝑃 ‖𝑉 ‖𝛿𝑎𝑁𝐼 ,𝑁𝐸 (⋅, 𝐄du𝑁𝐼 ,𝑁𝐷 ; 𝐲)‖𝑉 ∗
ℎ (4.2.56)

≤
(‖𝑟du𝑁𝐼 ,𝑁𝐷 ‖𝑉 ∗

ℎ + ‖𝛿𝑎𝑁𝐼 ,𝑁𝐸 (⋅, 𝐄du𝑁𝐼 ,𝑁𝐷 ; 𝐲)‖𝑉 ∗
ℎ) (‖𝑟

pr
𝑁𝐼 ,𝑁𝑃 ‖𝑉 ∗

ℎ + ‖𝛿𝑎𝑁𝐼 ,𝑁𝐸 (𝐄𝑁𝐼 ,𝑁𝑃 , ⋅; 𝐲)‖𝑉 ∗
ℎ)

𝛼ℎ
(4.2.57)

+ 𝛿𝑎𝑁𝐼 ,𝑁𝐸 (𝐄𝑁𝐼 ,𝑁𝑃 , 𝐄du𝑁𝐼 ,𝑁𝐷 ; 𝐲) ∶= Δ𝑧𝑁𝐼 ,𝑁𝑃 ,𝑁𝐷 . (4.2.58)

So the following error estimate and corresponding a posteriori estimator Δ𝑠𝑁𝐼 ,𝑁𝑃 ,𝑁𝐷 is ob-
tained

|𝑠(𝐄ℎ(𝐲)) − ̂𝑧𝑠𝑁𝐼 ,𝑁𝑃 ,𝑁𝐷 (𝐲)| ≤ Δ𝑠𝑁𝐼 ,𝑁𝑃 ,𝑁𝐷 (𝐲) ∶= 𝛼ℎ(𝐲)Δ𝐄𝑁𝐼 ,𝑁𝑃 (𝐲)Δ𝐄du
𝑁𝐼 ,𝑁𝐷 (𝐲) (4.2.59)

+ 𝛿𝑎𝑁𝐼 ,𝑁𝐸 (𝐄𝑁𝐼 ,𝑁𝑃 , 𝐄du𝑁𝐼 ,𝑁𝐷 ; 𝐲). (4.2.60)

For the estimation of the covariance and pseudo-covariance of 𝑠, we require the approxi-
mation of the non-linear quantities 𝑧(𝐲) = 𝑠(𝐲)2 and 𝑧(𝐲) = |𝑠(𝐲)|2 respectively. We therefore
introduce an additional dual problem (related to the Fréchet derivative of 𝑧) as in [89]: given
𝐲 ∈ 𝑈 , find 𝐄du2(𝐲) such that

𝑎∗(𝐄du2(𝐲), 𝐯; 𝜎(𝐲)) = −2 ̂𝑠𝑁𝐼 ,𝑁𝑃 ,𝑁𝐷 (𝐲)𝑠(𝐯), ∀𝐯 ∈ 𝑉 . (4.2.61)

Using analogous definitions for the corresponding Hi-Fi, EIM and EIM-RB problems (em-
ploying a reduced space 𝑉 du2𝑁𝐷2 of dimension 𝑁𝐷2) and the residual and error, we define the
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EIM-RB, dual-corrected approximation ̂𝑧𝑠2 of 𝑠2 to be

̂𝑧𝑠2𝑁𝐼 ,𝑁𝑃 ,𝑁𝐷 ,𝑁𝐷2(𝐲) = 𝑠(𝐄𝑁𝐼 ,𝑁𝑃 (𝐲))2 − (𝑟pr𝑁𝐼 ,𝑁𝑃 (𝐄du𝑁𝐼 ,𝑁𝐷 ; 𝐲))
2 − 𝑟pr𝑁𝐼 ,𝑁𝑃 (𝐄du2𝑁𝐼 ,𝑁𝐷2 ; 𝐲). (4.2.62)

The following error estimate for the EIM-RB approximation ̂𝑧𝑠2 of 𝑠2 and the a posteriori
indicator Δ𝑠2𝑁𝐼 ,𝑁𝑃 ,𝑁𝐷 ,𝑁𝐷2 can be derived similarly to the derivation in eq. (4.2.47)

||𝑠(𝐄ℎ(𝐲))2 − ̂𝑧𝑠2𝑁𝐼 ,𝑁𝑃 ,𝑁𝐷 ,𝑁𝐷2(𝐲)|| ≤ Δ𝑠2𝑁𝐼 ,𝑁𝑃 ,𝑁𝐷 ,𝑁𝐷2(𝐲) (4.2.63)

∶= (Δ𝑠𝑁𝐼 ,𝑁𝑃 ,𝑁𝐷 (𝐲))
2 + 𝛼ℎ(𝐲)Δ𝐄𝑁𝐼 ,𝑁𝑃 (𝐲)Δ𝐄du2

𝑁𝐼 ,𝑁𝐷2(𝐲) (4.2.64)

+ 𝛿𝑎𝑁𝐼 ,𝑁𝐸 (𝐄𝑁𝐼 ,𝑁𝑃 , 𝐄du2𝑁𝐼 ,𝑁𝐷2 ; 𝐲). (4.2.65)

For the estimation of the covariance of 𝑠, we have 𝑧 = |𝑠|2, so we use instead the following
dual problem: given 𝐲 ∈ 𝑈 , find 𝐄du3(𝐲) such that

𝑎∗(𝐄du3(𝐲), 𝐯; 𝜎(𝐲)) = −2 ̂𝑠𝑁𝐼 ,𝑁𝑃 ,𝑁𝐷 (𝐲)𝑠(𝐯), ∀𝐯 ∈ 𝑉 . (4.2.66)

Then we define the EIM-RB, dual-corrected approximation ̂𝑧 |𝑠|2 of |𝑠|2 to be

̂𝑧 |𝑠|2𝑁𝐼 ,𝑁𝑃 ,𝑁𝐷 ,𝑁𝐷3(𝐲) = |𝑠(𝐄𝑁𝐼 ,𝑁𝑃 (𝐲))|2 − ||𝑟pr𝑁𝐼 ,𝑁𝑃 (𝐄du𝑁𝐼 ,𝑁𝐷 ; 𝐲)||
2 − Re (𝑟pr𝑁𝐼 ,𝑁𝑃 (𝐄du3𝑁𝐼 ,𝑁𝐷3 ; 𝐲)) . (4.2.67)

The error estimate for the EIM-RB approximation ̂𝑧 |𝑠|2 of |𝑠|2 and the a posteriori indicator
Δ|𝑠|2
𝑁𝐼 ,𝑁𝑃 ,𝑁𝐷 ,𝑁𝐷3 are expressed as follows

|||
||𝑠(𝐄ℎ(𝐲))||

2 − ̂𝑧 |𝑠|2𝑁𝐼 ,𝑁𝑃 ,𝑁𝐷 ,𝑁𝐷3(𝐲)
||| ≤ Δ|𝑠|2

𝑁𝐼 ,𝑁𝑃 ,𝑁𝐷 ,𝑁𝐷3(𝐲) (4.2.68)

∶= (Δ𝑠𝑁𝐼 ,𝑁𝑃 ,𝑁𝐷 (𝐲))
2 + 𝛼ℎ(𝐲)Δ𝐄𝑁𝐼 ,𝑁𝑃 (𝐲)Δ𝐄du3

𝑁𝐼 ,𝑁𝐷3(𝐲) (4.2.69)

+ 𝛿𝑎𝑁𝐼 ,𝑁𝐸 (𝐄𝑁𝐼 ,𝑁𝑃 , 𝐄du3𝑁𝐼 ,𝑁𝐷3 ; 𝐲). (4.2.70)

Note that instead of constructing two different reduced dual spaces for problems eq. (4.2.61)
and eq. (4.2.66), we can instead approximately use the RB space constructed from eq. (4.2.61),
so that the EIM-RB solutions are related as
𝐄du3𝑁𝐼 ,𝑁𝐷3 = 𝐄du2𝑁𝐼 ,𝑁𝐷2 ̂𝑠𝑁𝐼 ,𝑁𝑃 ,𝑁𝐷 / ̂𝑠𝑁𝐼 ,𝑁𝑃 ,𝑁𝐷 and Δ|𝑠|2

𝑁𝐼 ,𝑁𝑃 ,𝑁𝐷 ,𝑁𝐷3 = Δ𝑠2𝑁𝐼 ,𝑁𝑃 ,𝑁𝐷 ,𝑁𝐷2 .

Remark 4.2.3. We mention also the expanded formulation introduced in Sen [149] that pro-
vides an alternative to the primal-dual formulation for the case of a general quadratic output.
This is achieved by transforming the original non-compliant problem where 𝑠 ≠ 𝑓 into a
compliant problem where 𝑠 = ̃𝑓 for some source term ̃𝑓 , albeit at the cost of doubling the
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original solution dimension𝑁ℎ. This formulation has also been usedwith success in Hess and
Benner [97] for the time-harmonic Maxwell equations and it is also applicable in our case for
the quadratic output |𝑠|2. Although the results and discussion in the above mentioned works
show advantages for this approach, we have chosen to use the primal-dual formulation due
to the lower computational cost of solving the linear system, the fact that we employ a factori-
sation to solve the dual problem at negligible cost, our use of the a posteriori error estimator
in eq. (4.2.68) which also employs the additional dual problem related to the linear output 𝑠
and can be sharper than the estimator used in Sen [149], and finally due to the generality of
the method which is applicable to general outputs such as 𝑠2.

In general, we can compute 𝛼ℎ(𝐲) as the square root of the minimum eigenvalue 𝜆min(𝐲)
of the generalised eigenvalue problemA𝐻

ℎ (𝐲)X−1
ℎ Aℎ(𝐲)v = 𝜆(𝐲)Xℎv, whereXℎ is the discrete

representation of the 𝑉 inner product in the FEM basis. However, this computation involves
Hi-Fi operations and therefore we cannot use it for the efficient online evaluation of the a
posteriori error indicator. We rely instead on an approximation of 𝛼ℎ(𝐲) which we describe
in the next section 4.2.3.

With regard to the computation of the dual norms of the primal and dual residuals and
of other required linear or anti-linear forms such as 𝛿𝑎𝑁𝐼 ,𝑁𝐸 (𝐄𝑁𝐼 ,𝑁𝑃 , ⋅; 𝐲), this can be efficiently
achieved through an offline-online decomposition using the corresponding Riesz represen-
tatives (see e.g. [88, 133, 137]). For the primal residual, we use the Riesz representative
�̂�pr𝑁𝐼 ,𝑁𝑃 (𝐲) ∈ 𝑉ℎ, so that ‖𝑟pr𝑁𝐼 ,𝑁𝑃 (⋅; 𝐲)‖2𝑉 ∗

ℎ = ‖�̂�pr𝑁𝐼 ,𝑁𝑃 (𝐲)‖2𝑉 . Then using the notationA0 = (S−𝚤𝜔M+)
and Ak = −𝚤𝜔M𝑘 and setting 𝜉0 = 1, we get

‖�̂�pr𝑁𝐼 ,𝑁𝑃 (𝐲)‖2𝑉 = 𝐛𝐻X−1
ℎ 𝐛 (4.2.71)

− 2Re(
𝑁𝐼
∑
𝑖=0

𝜉𝑖(𝐲)𝐞𝐻𝑁𝐼 ,𝑁𝑃 (𝐲)W𝐻A𝐻
𝑖 X

−1
ℎ 𝐛) (4.2.72)

+
𝑁𝐼
∑
𝑖,𝑗=0

𝜉𝑖(𝐲)𝜉𝑗(𝐲)𝐞𝐻𝑁𝐼 ,𝑁𝑃 (𝐲)W𝐻A𝐻
𝑖 X

−1
ℎ A𝑗W𝐞𝑁𝐼 ,𝑁𝑃 (𝐲), (4.2.73)

where 𝐲-independent quantities can be stored in the offline phase. An expression for the
dual norms of other quantities can be derived analogously.

Remark 4.2.4. We choose to enrich the dual spaces simultaneously with the primal space
(i.e. 𝑁𝑃 = 𝑁𝐷 = 𝑁𝐷2 = 𝑁𝐷3) for the 𝐲𝑚+1 that are selected at the 𝑚-th step by the greedy
algorithm, using the weighted a posteriori error indicator 𝝅(𝐲)Δ𝑧 , where Δ𝑧 denotes the
appropriate error indicator for the specific 𝑧. Therefore, in this approach, the dimensions
of all reduced spaces grow at the same rate. Essentially, this reflects the estimate that the
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Kolmogorov 𝑛-widths of the primal and dual problems decay at approximately the same
rate. In cases where the decay rate of one problem is significantly faster, the growth of the
corresponding reduced space is more important for fast convergence of |𝑧 − ̂𝑧| (for a more
thorough discussion see [61]).

Coercivity Factor Approximation by RBF

Generally in RB, the Successive Constraint Method (SCM) [104] can be used to obtain lower
bounds on 𝛼ℎ(𝐲) and enable the fast evaluation of the posteriori error indicator (see also
[96] for a comparison of different approaches for the time-harmonic Maxwell equations).
However, due to the computational effort required for SCM in high dimensions and our use of
adaptive training sets, we rely instead on a heuristic approximation 𝛼𝐼 (𝐲) of 𝛼ℎ(𝐲), achieved
through a Radial Basis Function (RBF) interpolation as proposed in [121]. For a training
set (𝐲𝑘)𝑁𝑡𝑘=1 = 𝑈train ⊂ 𝑈 and truncation level 𝐽 , we build the RBF interpolant 𝛼𝐼 (𝐲) > 0 by
computing the coercivity constant 𝛼ℎ(𝐲) for each 𝐲 ∈ 𝑈train and defining

log 𝛼𝐼 (𝐲) = 𝛽0 +
𝐽
∑
𝑗=1

𝛽𝑗𝑦𝑗 +
𝑁𝑡
∑
𝑘=1

𝑤𝑘𝜑(|𝐲 − 𝐲𝑘 |), (4.2.74)

where 𝜑(𝑟) = 𝑒−𝑟2 is the RBF and 𝑤𝑘 are weights that satisfy the relations

log 𝛼𝐼 (𝐲) = log 𝛼ℎ(𝐲), ∀𝐲 ∈ 𝑈train, (4.2.75)
𝑁𝑡
∑
𝑘=1

𝑤𝑘 = 0,
𝑁𝑡
∑
𝑘=1

𝑤𝑘(𝐲𝑘)𝑗 , 𝑗 = 1, … , 𝐽 . (4.2.76)

The resulting system is solved in the offline phase for the weights 𝛽𝑗 , 𝑗 = 0, … , 𝐽 and 𝑤𝑘 ,
𝑘 = 1, … , 𝑁𝑡 . Then, in the online phase, we compute the RBF approximation from eq. (4.2.74).
Similar to the EIM and RB methods, we don’t choose a priori a training set but we start from
one point 𝐲1 and then we progressively add the point 𝐲𝑚 to the training set whenever a Hi-Fi
solution at 𝐲𝑚 is computed.

4.2.4 Dimension-Adaptive SQ-EIM-RB Algorithm

We now describe the dimension-adaptive Generalised Sparse Quadrature, Empirical Inter-
polation Method and Reduced Basis algorithm for forward UQ, adapted and extended from
ideas in the algorithms presented in [36, 40, 41] and [128]. Algorithm 2 is used for the es-
timation of the prior mean of 𝑠 = 𝑠(𝐲) = 𝑠(𝐄(𝐲)). Similar algorithms are also used for the
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estimation of the covariance and pseudo-covariance of 𝑠 by replacing the error estimators
with the appropriate choices.

The idea in algorithm 2 is the replacement of the Hi-Fi model by the EIM-RB reduced
model in all SQ operations and the “training” of EIM-RB over a collection of adaptive training
sets 𝑈train, which are determined by the dimension-adaptive SQ algorithm. For non-nested
quadrature rules, these sets are constructed in each iteration as the union of product grids
𝐺𝝁 (eq. (4.1.7)) associated to selected indices 𝝁. For nested rules we can instead consider
only the new points added to the grid by each selected index 𝝁. By performing this adaptive
procedure, we aim to capture with specified accuracy the behaviour of the Hi-Fi model across
the parametric dimensions that aremost important for the estimation of the QoI. At each step,
we estimate the EIM-RB approximation error ℰEIM-RB(𝐲) = 𝝅(𝐲)Δ𝑧𝑁𝐼 ,𝑁𝑃 ,𝑁𝐷 (𝐲) and refine the
EIM or/and the RB approximationswhen needed, based on corresponding error contributions
which are estimated to be given by

ℰEIM(𝐲) = 𝝅(𝐲)𝛼𝐼 (𝐲)Δ𝐄
EIM(𝐲)Δ𝐄du

EIM(𝐲), (4.2.77)

and
ℰRB(𝐲) = 𝝅(𝐲)𝛼𝐼 (𝐲)Δ𝐄

RB(𝐲)Δ𝐄du
RB (𝐲), (4.2.78)

respectively. If we assume all error contributions to be balanced and the error estimators to
be effective, then we can estimate that to achieve a tolerance tolEIM-RB for ℰEIM-RB, we can
set tolEIM ≃ tolRB ≃ tolEIM-RB/𝑐 for ℰRB and ℰEIM, for some constant 𝑐 > 1. The choice of the
tolerance tolEIM-RB is crucial for the performance of the algorithm and it should be selected
low enough such that SQ error converges to the desired accuracy but not too low as this
would make the model reduction inefficient. Of course, the efficiency of the error estimator,
defined as the ratio of the estimator to the actual error plays an important role and we would
like this to be as close to unity as possible.

Remark 4.2.5. As mentioned above, the rationale for algorithm 2 is based on the general
greedy algorithm for the construction of a nested sequence of approximating spaces 𝑉𝑁 for
the manifoldℳ ⊂ 𝑉 . In practice, the strong greedy algorithm is relaxed into its weak version
which has been proven to guarantee a convergence rate that is comparable to the Kolmogorov
𝑛-widths (see Binev et al. [27], DeVore [66], and DeVore et al. [67]). Specifically, assume that
𝑉𝑁 = span{𝐄ℎ(𝐲1), … , 𝐄ℎ(𝐲𝑁 )}, then at the next step the weak greedy algorithm enriches the
space 𝑉𝑁 by adding a function 𝐄ℎ(𝐲𝑁+1) ∈ ℳ such that

‖𝐄ℎ(𝐲𝑁+1) − 𝑃𝑁𝐄ℎ(𝐲𝑁+1)‖ ≥ 𝜏 sup
𝐲∈𝑈

‖𝐄ℎ(𝐲) − 𝑃𝑁𝐄ℎ(𝐲)‖, (4.2.79)
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where 𝑃𝑁 is the orthogonal projection operator into 𝑉𝑁 , 𝜏 is fixed with 0 < 𝜏 ≤ 1 (𝜏 = 1
for the strong greedy case) and the norm is a suitable (weighted) norm in 𝑉 . The weak
greedy property in eq. (4.2.79) is for example satisfied when one uses a suitable surrogate
Δ(𝐲) to measure the error ‖𝐄(𝐲) − 𝑃𝑁𝐄(𝐲)‖ as we have done in our formulation above. Still,
even in this relaxed version, the optimisation in each step is over 𝑈 or over a sufficiently fine
discretisation of 𝑈 . In our case, this is not practically possible due to the high-dimensionality
of 𝑈 , so that we resort to an optimisation over an adaptive choice of training sets 𝑈train. At
each step, the training set offers a discretisation of 𝑈 that has some accuracy 𝜖. Due to (local)
Lipschitz continuity, this accuracy is transferred to an accuracy 𝐿𝜖 in 𝑉 , with a 𝐲-dependent
factor 𝐿 = 𝐿(𝐲). Therefore, by solving the optimisation problem over a training set with
accuracy 𝜖, eq. (4.2.79) is only satisfied up to an accuracy 𝐿𝜖, i.e. ‖𝐄ℎ(𝐲𝑁+1) − 𝑃𝑁𝐄ℎ(𝐲𝑁+1)‖ ≥
𝜏(sup𝐲∈𝑈 ‖𝐄ℎ(𝐲)−𝑃𝑁𝐄ℎ(𝐲)‖−𝐿𝜖). If there is a ̃𝜏 such that 𝜏(sup𝐲∈𝑈 ‖𝐄ℎ(𝐲)−𝑃𝑁𝐄ℎ(𝐲)‖−𝐿𝜖) ≥
̃𝜏 (sup𝐲∈𝑈 ‖𝐄ℎ(𝐲) − 𝑃𝑁𝐄ℎ(𝐲)‖, then the weak greedy property is satisfied with ̃𝜏 < 𝜏 . If there

exists such a global ̃𝜏 for all training steps, then the adaptive choice of training sets converges
with a rate comparable to the Kolmogorov 𝑛-widths, albeit with a deteriorated perfomance
due to the existence of the factor 1/ ̃𝜏 in the comparison [67]. Additionally, as the training
sets are chosen according to the Sparse Quadrature algorithm, we heuristically expect the
algorithm to perform well for exactly this purpose, i.e. for the approximation of a discrete
set of functions defined on the sparse grid points.

Computational Complexity

We give here a short description of the computational complexity involved in the elements
in algorithm 2 for the case 𝑧 = 𝑠. First, if we assume that we require 𝑁SQ Hi-Fi solutions
(each involving the solution of a system with 𝑁ℎ degrees of freedom) to achieve a specified
accuracy 𝜖 using a SQ-only version of the algorithm, then the computational complexity in
this case scales dominantly as 𝑂(𝑁𝑆𝑄𝑁 𝑝

ℎ ) (complex) operations, where 𝑝 ≤ 3 depends on
the solver used and on the sparsity of the matrices involved. In the case of the SQ-EIM-RB
algorithm, the situation is more complex as we have to take into account the computational
work involved in both training and evaluating the Low-Fi approximation. This is usually
split into an “offline” and “online” phase; in our case the two phases interchange due to the
adaptive nature of the algorithm. For our purposes, “offline” phase consists of enriching the
Low-Fi approximations and updating the required reduced quantities. On the other hand, the
“online” phase consists of evaluating the a posteriori error estimators and calculating the Low-
Fi approximations. For reasonable values of 𝑁𝑃 and 𝑁𝐼 the “online” phase is computationally
less costly than the “offline” phase so we focus on the second. If we assume that to achieve
an accuracy 𝜖, the algorithm requires 𝑁𝐼 terms for the EIM approximation and a size of
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Algorithm 2: Dimension-adaptive SQ-EIM-RB algorithm
Input: tolerances tol, tolEIM, tolRB, tolEIM-RB, maximum cardinality 𝑁max, starting

truncation level 𝐽 , 𝑁𝐸 , function 𝑧(𝐲) = 𝑠(𝐄(𝐲));
Output: index sets Λ𝑁 , Λ̃𝑁 = Λ𝑁 ∪ 𝑅Λ𝑁 , quadratures 𝒬Λ𝑁 [𝑧], 𝒬Λ̃𝑁 [𝑧];

1 Initialise: 𝑁 = 𝑁𝑃 = 𝑁𝐼 = 1, 𝝂 = 𝟎, Λ𝑁 = Λ̃𝑁 = {𝟎}, 𝑅Λ𝑁 = {∅}, 𝐴 = 𝟎, ℰ = 2 ⋅ tol;
a) construct initial sparse grid 𝐺Λ𝑁 from (4.1.8);
b) solve the primal and dual Hi-Fi problems at 𝐺Λ𝑁 ;
c) construct initial EIM-RB primal and dual spaces, initialise auxiliary EIM

with 𝑁𝐸 terms at random points, store offline quantities, initialise RBF approxima-tion
(4.2.74);

d) calculate initial SQ approximation 𝑄old = 𝒬Λ𝑁 [𝑧] as in (4.1.9);
2 while 𝑁 < 𝑁max and ℰ > tol do
3 find 𝑁(𝝂, Λ𝑁 ) as in (4.1.54), 𝑈train = {∅};
4 for 𝝁 ∈ 𝑁(𝝂, Λ𝑁 ) and Λ𝑁 ∪ {𝝁} is downward closed do 𝑈train = 𝑈train ∪ 𝐺𝝁;

// Train EIM-RB on 𝑈train
5 find 𝐲𝑁𝐼 ,𝑃+1 = arg sup𝐲∈𝑈train

[𝝅(𝐲)Δ𝑧𝑁𝐼 ,𝑁𝑃 ,𝑁𝐷 (𝐲)], 𝑁train = 0;
6 while ℰEIM-RB(𝐲𝑁𝐼 ,𝑃+1) > tolEIM-RB and 𝑁train < #(𝑈train) do
7 if ℰEIM(𝐲𝑁𝐼 ,𝑃+1) > tolEIM then
8 enrich main and auxiliary EIM approximations at 𝐲𝑁𝐼 ,𝑃+1, 𝑁𝐼 = 𝑁𝐼 + 1;
9 end

10 if ℰRB(𝐲𝑁𝐼 ,𝑃+1) > tolRB then
11 solve primal and dual Hi-Fi problems at 𝐲𝑁𝐼 ,𝑃+1, enrich spaces;
12 𝑁𝑃 = 𝑁𝑃 + 1, add 𝛼ℎ(𝐲𝑁𝐼 ,𝑃+1) to RBF approximation;
13 end
14 update offline quantities, find 𝐲𝑁𝐼 ,𝑃+1 = arg sup𝐲∈𝑈train

[𝝅(𝐲)Δ𝑧𝑁𝐼 ,𝑁𝑃 ,𝑁𝐷 (𝐲)];
15 𝑁train = 𝑁train + 1;
16 end
17 for 𝝁 ∈ 𝑁(𝝂, Λ𝑁 ) and Λ𝑁 ∪ {𝝁} is downward closed do
18 Λ̃𝑁 = Λ̃𝑁 ∪ {𝝁}, 𝑅Λ𝑁 = 𝑅Λ𝑁 ∪ {𝝁};
19 evaluate 𝑄Λ̃𝑁 [𝑧] using EIM-RB approximation ̂𝑧𝑁𝐼 ,𝑁𝑃 ,𝑁𝐷 ;
20 compute profit 𝑃(𝝁) = (𝑄Λ̃𝑁 − 𝑄old)[𝑧], 𝑄old = 𝑄Λ̃𝑁 ;
21 end
22 choose 𝝉 from 𝑅Λ𝑁 with the highest profit and set 𝝂 = 𝝉 ;

// Check for dimension activation
23 if ∃𝑗 = 1, … , 𝐽 such that 𝐴𝑗 = 0 and 𝜏𝑗 > 0 then
24 𝐴𝑗 = 1, 𝐽 = 𝐽 + 1, Λ̃𝑁 = Λ̃𝑁 ∪ {𝐞𝐽 }, 𝑅Λ𝑁 = 𝑅Λ𝑁 ∪ {𝐞𝐽 };
25 train EIM-RB on 𝑈train = 𝐺𝐞𝐽 as in 5-16;
26 compute profit 𝑃(𝐞𝐽 ) = (𝑄Λ̃𝑁 − 𝑄old)[𝑧], 𝑄old = 𝑄Λ̃𝑁 ;
27 𝝂 = argmax [max(𝑃(𝝉), 𝑃(𝐞𝐽 ))];
28 end
29 Λ𝑁+1 = Λ𝑁 ∪ {𝝂}, 𝑅Λ𝑁+1 = 𝑅Λ𝑁 \{𝝂}, Λ̃𝑁+1 = Λ̃𝑁 , ℰ = 𝑃(𝝂), 𝑁 = 𝑁 + 1;
30 end
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𝑁𝑃 = 𝑁𝐷 for the RB spaces, then the computational cost in total for the “offline” phases is
dominated by: i) the solution of the primal Hi-Fi systems which scales as 𝑂(𝑁𝑃𝑁 𝑝

ℎ ) (note
that we assume a factorisation is obtained from the primal problems and used to solve the
dual problems, thus making the associated computational work negligible), ii) the solution of
the generalised eigenvalue problems which scales as𝑂(𝑁𝑃𝑁 𝑝′

ℎ ) for some 𝑝′ possibly different
from 𝑝 and iii) the computation required for storing the reduced matrices and the a posteriori
error estimation which has cost that depends on the current values of 𝑁𝐼 , 𝑁𝐸 , 𝑁𝑃 , 𝑁ℎ at each
update of the offline quantities. For this last contribution we can give a rough estimate of
cost as 𝑂 (4(2𝑁𝐼 + 𝑁𝐸)𝑁𝑃𝑁 2ℎ + 4(𝑁 2𝐼 + (𝑁𝐼 + 𝑁𝐸)2)𝑁 2𝑃𝑁ℎ) for the current values of 𝑁𝐼 , 𝑁𝐸 , 𝑁𝑃
at each update, where we assumed that in the Hi-Fi dimension 𝑁ℎ, the cost of solving a
factorised system and the cost of a matrix-vector product, is 2𝑁 2ℎ operations. Depending on
𝑁ℎ and the required 𝑁𝑃 , 𝑁𝐼 , 𝑁𝐸 , a plain SQ or a SQ-EIM-RB approach is computationally less
costly, for example as 𝑁ℎ gets large the cost of solving the Hi-Fi systems dominates and the
model reduction approach performs favourably.





Chapter 5

Numerical Experiments

In this section we present numerical evidence to showcase the performance of the algorithms
described in chapter 4 with emphasis on the forward UQ case. Let us mention that we used
our ownMATLAB implementations of FEM for Maxwell equations (see Appendix A for more
details) and of the SQ and EIM-RB methods. For SQ, we also made heavy use of the Sparse
Grids Matlab kit (http://csqi.epfl.ch [19]) with suitable modifications. For all numerical ex-
periments we used the Gauss-Hermite quadrature rule with 𝑚𝑙 = 𝑙 + 1, as it proved to be
generally better in terms of computational cost and convergence than the Genz-Keister and
weighted Leja rules.

5.1 Numerical Experiment 1: ForwardUQ for PointDipole
Receiver

The parameters in Maxwell equations are set to 𝜇 = 𝜇0, 𝜔 = 2𝜋 and ‖𝐩𝑠‖2 = 50000. The
domain is chosen as 𝐷 = (−5000, 5000) × (−5000, 5000) × (−4000, 4000), which is separated
into 𝐷+ and 𝐷− by the horizontal plane 𝑧 = 0. Figure 5.1 shows a horizontal slice of the
tetrahedral mesh used in our examples, which is a priori refined at the regions around the
source 𝐱𝑠 = (−500, −350, 300) and sensor 𝐱𝑟 = (300, 450, 200) positions, while it is coarser
near the boundary. Both source and receiver are 𝑥-oriented. The total number of tetrahedra
amounts to 𝑛𝑐 = 62786 which results in 𝑁ℎ = 70284 internal degrees of freedom for the Hi-Fi
FEM problems that are solved using the sparse direct solver MUMPS [7]. As mentioned in
section 2.2.1, we use a regularisation approach for point sources and receivers.

http://csqi.epfl.ch
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Fig. 5.1 Horizontal slice (𝑧 = 150) of the mesh used in Experiment 1 with 𝑛𝑐 = 62786 cells,
refined at the source (depicted with red square) 𝐱𝑠 = (−500, −350, 300) and receiver (depicted
with yellow star) 𝐱𝑟 = (300, 450, 200) positions.

5.1.1 SQ Algorithm

For our numerical experiment, we set 𝜎+ = 3.3, Var[𝑏] = 1, 𝜎∗(𝐱) = 0 and 𝜎0(𝐱) = 1/2.
The smoothness parameter is chosen to be 𝜈 = 15/2, which according to the analysis in sec-
tion 4.1 should theoretically lead to a convergence rate 𝑂(𝑁 −1). We use the weight matrix
𝑀1/2 = diag(1250, 1250, 300) for the weighted Euclidean norm to account for anisotropy in
the 𝑧 direction. A realisation of the conductivity random field is depicted in fig. 3.2, while
fig. 3.1 shows the decay of the normalised eigenvalues 𝜆𝑗 and norms ‖𝜓𝑗‖𝐿∞(𝐷−) for this choice
of covariance function, which agrees with the theoretical estimates. We start from 𝐽 = 10 di-
mensions, which capture about 85% of the variance in the KL expansion. As a first test, we em-
ploy algorithm 1 for the approximation of 𝔼[𝑓 ] with 𝑓 (𝐲) = 𝑠(𝐲) = 𝑠(𝐄(𝐲)) = 𝐞𝑥 ⋅ 𝛿𝐱𝑟 (𝐄(𝐲)) =
𝐸𝑥(𝐱𝑟 ; 𝐲), 𝑓 (𝐲) = 𝑠(𝐲)2, 𝑓 (𝐲) = |𝑠(𝐲)|2, using a separate simulation for each choice of 𝑓 . We
set the tolerance as tol = 10−5 ⋅ |𝑄Λ1[𝑓 ]| ≈ 4 ⋅ 10−6. Approximating the “true” value of the inte-
grals as 𝐸[𝑓 ] ≈ 𝑄Λ̃400[𝑓 ] (see table 5.2), we report the convergence of the relative error with
respect to the number of indices in fig. 5.2a. The results show a convergence ratio that is in
agreement with the theoretical estimate, although the decrease of the error is not monotonic.
Note that convergence is observed even for the non-holomorphic function 𝑓 = |𝑠|2. The com-
putational effort required for 𝑁 = 400 amounts to 𝑁𝑆𝑄 = 13402, 𝑁𝑆𝑄 = 12696, 𝑁𝑆𝑄 = 12967
solutions of Hi-Fi forward problems for the three choices of 𝑓 respectively. Figure 5.2b shows
the sparse grid levels for the activated dimensions at 𝑁 = 400, using the SQ algorithm for the
approximation of 𝔼[𝑠]. The graph indicates that the first two dimensions are the most impor-
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(a) Convergence of relative error |𝔼[𝑓 ] −
𝑄Λ𝑁 [𝑓 ]|/|𝔼[𝑓 ]| with respect to the number
of indices 𝑁 for the plain SQ algorithm
with 𝑓 = 𝑠, 𝑓 = 𝑠2 and 𝑓 = |𝑠|2. The “true”
value is approximated as 𝔼[𝑓 ] ≈ 𝑄Λ̃400[𝑓 ].

(b) Activated dimensions and corre-
sponding sparse grid levels for the ap-
proximation of 𝔼[𝑠] by the SQ algo-
rithm 1.

Fig. 5.2 Results with SQ algorithm 1

tant, but there isn’t a clear decrease in the sparse grid levels utilised for higher dimensions,
which is an indication of the complex effect that different dimensions have on the computed
QoIs.

5.1.2 SQ-EIM-RB Algorithm

As a next step, we employ the SQ-EIM-RB algorithm 2, where nowwe use the approximation
𝑄Λ𝑁 [ ̂𝑓 ], with ̂𝑓 being the EIM-RB representation for 𝑓 = 𝑠, 𝑓 = 𝑠2, 𝑓 = |𝑠|2, i.e. ̂𝑓 = ̂𝑧𝑠 , ̂𝑓 =
̂𝑧𝑠2 , ̂𝑓 = ̂𝑧 |𝑠|2 respectively. We use a separate simulation for the choices 𝑓 = 𝑠 and 𝑓 = 𝑠2 but

to save computational effort we compute 𝑄Λ𝑁 [ ̂𝑧𝑠2] and 𝑄Λ𝑁 [ ̂𝑧 |𝑠|2] using the same simulation,
with the profits from the first driving the sparse grid algorithm, and by utilising the same RB
space for both quantities as mentioned in section 4.2.3. We additionally set the tolerances
as tolEIM-RB = 102 ⋅ tol, tolEIM = 10−2 ⋅ tolEIM-RB, tolRB = 10−1 ⋅ tolEIM-RB and we initialise
the auxiliary EIM approximation with 𝑁𝐸 = 10 terms using randomly chosen values for 𝐲.
Choosing an EIM tolerance that is lower than the RB tolerance was necessary in practice to
achieve convergence up to the desired accuracy. Figure 5.3 shows the convergence of the
relative error with respect to the number of indices. We don’t have an a priori convergence
theory for this case to compare, so our reference is the estimate from the SQ theory. The
results show an error decay that is comparable to the plain SQ case but with possibly larger
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Fig. 5.3 Convergence of relative error |𝔼[𝑓 ] − 𝑄Λ𝑁 [ ̂𝑓 ]|/|𝔼[𝑓 ]| with respect to the number of
indices 𝑁 for the SQ-EIM-RB algorithm 2 with 𝑓 = 𝑠, 𝑓 = 𝑠2 and 𝑓 = |𝑠|2, and EIM-RB
approximations ̂𝑓 = ̂𝑧𝑠 , ̂𝑓 = ̂𝑧𝑠2 , ̂𝑓 = ̂𝑧 |𝑠|2 respectively. The “true” value is approximated as
𝔼[𝑓 ] ≈ 𝑄Λ̃400[𝑓 ].

(a) Behaviour of max𝐲∈𝑈train ℰEIM-RB(𝐲) as
the algorithm runs through the training
sets 𝑈train. The last considered value of
max𝐲∈𝑈train ℰEIM-RB(𝐲) in each 𝑈train is de-
picted with an orange star.

(b) Sparse Quadrature error indicator ℰ ,
equal to the profit 𝑃(𝝂) for the chosen
index 𝝂 , in each iteration of algorithm 2,
with respect to the number of indices 𝑁 .

Fig. 5.4 Performance of the SQ-EIM-RB method and the SQ error indicator.
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(a) Effectivity 𝜂𝑠(𝐲) of the error estimator
Δ𝑠𝑁𝐼 ,𝑁𝑃 ,𝑁𝐷 (𝐲) for each selected 𝐲.

(b) Ratio of interpolated 𝛼𝐼 (𝐲) to discrete
𝛼ℎ(𝐲) coercivity factor for each selected
𝐲.

Fig. 5.5 Effectivity and discrete coercivity factor.

𝑁𝐼 𝑁𝑃 ̂𝑓 evaluations active dimensions
𝑠 143 86 12530 30

𝑠2, |𝑠|2 150 69 11279 36
Table 5.1 Number of terms 𝑁𝐼 in the EIM approximation, reduced space size 𝑁𝑃 = 𝑁𝐷 = 𝑁𝐷2
and number of evaluations of the EIM-RB approximation ̂𝑓 , for the three different choices of
𝑓 at 𝑁 = 400.

fluctuations. Observe that the use of 𝑓 = 𝑠2 to drive the algorithm and build the reduced space
affects the performance of the approximation for the case 𝑓 = |𝑠|2. At 𝑁 = 400, we get the
reduced space sizes, number of function evaluations and active dimensions summarised in
table 5.1 and the values outlined in table 5.2. Figure 5.4a shows the behaviour of the quantity
max𝐲∈𝑈train ℰEIM-RB(𝐲) as the algorithm progresses through the training sets 𝑈train. We mark
the last value of this quantity for each training set (corresponding to the last 𝐲 in each set
or the first 𝐲 in each set for which the tolerance criterion is satisfied) with an orange star.
It is clear that most of these values stay below the required tolerance. We can also see that
there are spikes in the values of max𝐲∈𝑈train , which can be attributed to training sets that are
related with the activation of new dimensions. In Figure 5.4b, we report the error indicator
ℰ = 𝑃(𝝂) for the chosen indices 𝝂 which shows a clear decrease but with some deterioration
as the tolerance limits are approached.

More information on the EIM-RB approximation scheme can be derived from fig. 5.5a
which shows the effectivity of the EIM-RB error estimator Δ𝑠𝑁𝐼 ,𝑁𝑃 ,𝑁𝐷 (𝐲), defined as 𝜂𝑠(𝐲) =
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plain SQ SQ-EIM-RB
𝔼[𝑠] (4.4828 − 5.7186i) × 10−6 (4.4820 − 5.7218i) × 10−6

Cov[𝑠, 𝑠] (−1.436 − 0.806i) × 10−12 (−1.424 − 0.824i) × 10−12
Cov[𝑠, 𝑠] 1.830 × 10−12 1.793 × 10−12

Table 5.2 Values in SI units of the mean 𝔼[𝑠], covariance Cov[𝑠, 𝑠] and pseudo-covariance
Cov[𝑠, 𝑠] as approximated by the SQ (using 𝑄Λ̃400[𝑓 ]) and SQ-EIM-RB (using 𝑄Λ̃400[ ̂𝑓 ]) meth-
ods at 𝑁 = 400.

Δ𝑠𝑁𝐼 ,𝑁𝑃 ,𝑁𝐷 (𝐲)
|𝑠(𝐄ℎ(𝐲))− ̂𝑧𝑠𝑁𝐼 ,𝑁𝑃 ,𝑁𝐷 (𝐲)|

. It varies in the range 0.33 − 1300.24 with a mean equal to 8.13. Values

lower than 1 are attributed to the approximation of 𝛼ℎ(𝐲) by 𝛼𝐼 (𝐲), while large values are
additionally attributed to the corresponding large condition numbers of the underlying vari-
ational problem. Furthermore, fig. 5.5b depicts the ratio of the RBF interpolated coercivity
factor 𝛼𝐼 (𝐲) to the discrete coercivity factor 𝑎ℎ(𝐲) for each selected 𝐲. We can see that the
ratio varies in the range 0.23 − 4.74 with a mean that is close to unity, which shows that the
RBF interpolant gives a reasonable approximation for most 𝐲.

5.1.3 Comparison of SQ and SQ-EIM-RB

In theory, the accuracy of the SQ and SQ-EIM-RB algorithms, for a fixed number of indices
𝑁 = 𝑁max, should be similar if we assume that we have selected a sufficiently low toler-
ance such that the EIM-RB error is negligible compared to the SQ error, and also that the a
posteriori error estimator ℰEIM-RB for EIM-RB does not underestimate the actual error (i.e.
the EIM-RB approximation is certified). Since this last assumption is not strictly true in our
case because of the approximation of the coercivity factor and the heuristic error estimation
for the EIM approximation, we can use a conservative value for the EIM-RB tolerance to
enforce the condition implicitly. In practice, the accuracies may differ due to the adaptivity
and non-monotonicity of SQ. Specifically, the chosen indices might be different in the two
methods and this will be reflected in the accuracies achieved after a fixed number of steps
in the SQ algorithm. In our example, the final errors at 𝑁 = 400 for the two methods are
similar for 𝑓 = 𝑠 and 𝑓 = 𝑠2 but differ an order of magnitude for 𝑓 = |𝑠|2. The difference
can be attributed to the re-use of the reduced space constructed for the output 𝑓 = 𝑠2 as dis-
cussed above. With regard to the computational cost, the discussion in section 4.2.4 shows
that for low values of 𝑁ℎ, we expect the SQ algorithm to be more efficient while for larger
values of 𝑁ℎ the SQ-EIM-RB algorithm achieves computational savings. The lowest value of
𝑁ℎ where the SQ-EIM-RB algorithm starts being more efficient depends mainly on the size
of the reduced spaces needed to achieve a specific accuracy and the values of 𝑝 and 𝑝′ in the
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computational costs of the sparse and eigenvalue solvers respectively. In our example, for
𝑁 = 400 and 𝑓 = 𝑠, the SQ algorithm required 13402 forward evaluations which assuming
𝑝 = 2.5 amounts to computational cost of the order of 𝑂(1016) complex operations. For the
SQ-EIM-RB algorithm we can calculate an estimate by assuming 𝑝′ = 𝑝 = 2.5 and using the
recorded values of 𝑁𝐼 and 𝑁𝑃 = 𝑁𝐷 as the algorithm progresses. Then, summing the main
contributions as discussed in section 4.2.4, we again get an estimate of 𝑂(1016) complex op-
erations. This approximate calculation implies that the SQ algorithm is as efficient as the
SQ-EIM-RB algorithm in this moderate-scale case. However, the above estimation shows
that SQ-EIM-RB scales better with increasing 𝑁ℎ and is an appropriate choice for large-scale
problems.

5.2 Numerical Experiment 2: Forward UQ for the FEM
Solution

In this numerical experiment, we apply the forward UQ algorithm 1, for the statistical char-
acterisation of the uncertainty in the Hi-Fi FEM solution 𝐄ℎ throughout the whole domain.
The QoIs are the (prior) mean and covariance of the vector of coefficients 𝝃 in the FEM repre-
sentation 𝐄ℎ(𝐱) = ∑𝑛𝑒

𝑗=1 𝜉𝑗𝐍𝑗(𝐱). The random field parameters are the same as in section 5.1,
with the same source and domain, and the mesh consists of 62786 tetrahedra with 76431 de-
grees of freedom at the edges. Figure 5.6 shows the mean log10 |𝐸[𝝃 ]| (with the absolute value
taken component-wise) of the vector of FEM coefficients and fig. 5.7 shows the streamlines
generated by the mean electric field. Since it is difficult to visualise the covariance matrix
values assigned spatially in 3D, we plot in fig. 5.8 only the diagonal of the covariance matrix
of the vector of coefficients as log10(diag(Cov[𝝃 , 𝝃 ])). The results obtained were for number
of indices 𝑁 = |Λ| = 100 in the SQ algorithm resulting in ∼ 1000 forward evaluations. This
experiment shows that the SQ methodology can be applied not only to scalars but also to
vector-valued QoIs with no modifications.

5.3 Numerical Experiment 3: Forward UQ for Multiple
Receivers

In this example we estimate using algorithm 1 up to 𝑁 = |Λ| = 100, the mean and covariance
of the simulated measurements 𝑄 ∈ ℂ𝐾 of the electric field, that is generated by a point
dipole source at position 𝐱𝑠 = (0, 0, 250), at 𝐾 = 169 point dipole receivers that are placed on
a grid at 𝑧 = 150 and are 𝑥-oriented for 𝑥 > 0 and 𝑦-oriented for 𝑥 < 0. The domain and the
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Fig. 5.6 Point cloud of mean values log10 |(𝐸[𝝃 ])| (absolute value is component-wise) for the
vector of coefficients in the FEM solution expansion.

Fig. 5.7 Streamlines generated by the mean electric field FEM solution.

Fig. 5.8 Point cloud of diagonal of covariance matrix log10(diag(Cov[𝝃 , 𝝃 ])) for the vector of
coefficients in the FEM solution expansion.
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Fig. 5.9 Representation of the mean and covariance of the measurements 𝑄. The size of the
dots is analogous to log10 |𝔼[𝑄]| and the colour of the dots is analogous to the covariance
log10(Cov[𝑄, 𝑄])

randomfield parameters are the same as section 5.1 and themesh consists of 86937 tetrahedra
with 102719 edges. We use again the regularisation approach, so the mesh is a priori refined
around the source and receivers positions. The plot in fig. 5.9 gives a graphical representation
of the magnitude of the values log10 |𝔼[𝑄]| and log10(Cov[𝑄, 𝑄]). This plot shows that the
variance is higher around the source position. Therefore, an interpretation is that according
to the prior assumptions, one should aim to measure at these positions around the source to
put constraints and reduce the variance by informing the prior. This is well-known by CSEM
experts, who have also arrived at the same conclusion using the deterministic concepts of
sensitivity and integrated sensitivity [168] which can be calculated to be larger in the region
around the source. Nevertheless, this type of quantified measure of uncertainty can provide
valuable information regarding the model and the design of experiments.

5.4 Numerical Experiment 4: Bayesian Inverse Problem

In this experiment we use the approach described in section 4.1.1 to examine a Bayesian
inverse problem. Specifically, we employ the curvature-rescaled adaptive SQ approach to es-
timate the posterior mean of the conductivity random field. This approach also requires the
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intermediate step of computing the MAP estimate which amounts to solving a regularised
least-squares problem similar to deterministic Tikhonov regularisation. The model uses the
same Maxwell equations parameters, prior random field parameters and domain as in sec-
tion 5.1. The ground truth used to generate the synthetic data was chosen as a random
realisation of the conductivity random field, shown in fig. 5.11. The measurement data vec-
tor 𝐝 has size 𝐾 = 676 and is produced by measuring the electric field that is generated by 4
different sources, at frequency 𝑓 = 1Hz and ‖𝐩𝑠‖ = 50000, at a grid of 169 𝑥-oriented dipole
receivers shown in fig. 5.10. The synthetic data 𝐝 is then polluted with additive Gaussian
noise 𝑁(0, Γ) where Γ = 𝜎2𝐼𝐾 and 𝜎 is such that the signal-to-noise ratio is SNR = 20 dB.

The regularised least-squares problem associated to the MAP estimate is solved using a
subspace trust-regionmethod based on the interior-reflectiveNewtonmethod (fminunc trust-
region method in MATLAB), with explicitly calculated Jacobian (by adjoint method) and
Hessian matrices (by direct-adjoint method). The algorithm required 5 iterations to converge
to relative tolerance 10−6. The MAP estimate for the conductivity random field is shown in
fig. 5.12 (note that the colour map scale is different in the three figures). After solving an
eigenvalue involving the Hessian, we change the integration coordinates by employing the
transformation in eq. (4.1.56), and then apply algorithm 1 to estimate the posterior mean of
the conductivity. We run the algorithm up 𝑁 = |Λ| = 300 indices in the index set Λ, which
required 378 indices in the index set Λ̃ due to the adaptive nature of the algorithm (i.e. for
the exploration of the reduced margin). The total number of forward evaluations was 4835,
with 31 activated parametric dimensions. This experiment is meant to show an example
application of the curvature-rescaled SQ algorithm for this CSEM-inspiredmodel. The results
show that the MAP estimate and the posterior mean are close qualitatively and in value, but
they are both far from the ground truth, showing only a slight qualitative resemblance. We
can conclude that for this experiment, the information content in the data was not sufficient
to obtain estimates closer to the ground truth, and therefore the design of the experiment has
to be considered in more detail via e.g. optimal experimental design methods (OED) [5]. We
also plot in fig. 5.14 the relative error for the approximation of the normalisation constant
𝑍 = 𝔼𝛾𝐺 [exp(−𝐻(𝐲))], using the preconditioned SQ method described in section 4.1.1 and
the direct SQ algorithm without preconditioning. The results indicate that the direct SQ
approach fails to converge, while the preconditioned SQ method shows convergence but
with large variations that can be attributed to the dimension and order adaptive algorithm,
the non-nested quadrature rule and possible numerical instabilities. Since we lack an a priori
convergence estimate in this case, more theoretical analysis is needed to reach a conclusion
for the rate of convergence.
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Fig. 5.10 Grid of sources (red triangles) and receivers (black circles). The data 𝐝 consists of
𝐾 = 4×169 = 676measurements of the electric field 𝑥-component generated by the 4 different
sources at the 169 receiver positions, polluted with noise so that the signal-to-noise ratio is
SNR = 20 dB.

Fig. 5.11 Ground truth used for generating the synthetic data, chosen as a random realisation
of the conductivity random field with the parameters as in section 5.1.
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Fig. 5.12 MAP estimate for the conductivity given by the minimisation of the Onsager-
Machlup functional using a trust-region method.

Fig. 5.13 Posterior mean estimate for the conductivity, estimated using the SQ approach in
algorithm 1 up to |Λ| = 300 indices in the index set Λ, and 378 indices in the index set Λ̃, with
4835 forward evaluations in total and 31 activated parametric dimensions.
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Fig. 5.14 Convergence of relative error |𝔼𝛾𝐺 [𝑓 ]−𝑄Λ𝑁 [𝑓 ]|/|𝔼𝛾𝐺 [𝑓 ]|with respect to the number
of indices 𝑁 , with 𝑓 = exp(−𝐻(𝐲)), and using the preconditioned SQ method described
in section 4.1.1 and the direct SQ algorithm without preconditioning. The “true” value is
approximated as 𝔼𝛾𝐺 [𝑓 ] ≈ 𝑄Λ̃300[𝑓 ] using the preconditioned method.





Chapter 6

Conclusion and Outlook

This thesis started by examining the deterministic low-frequency, time-harmonic Maxwell
equations in the context of CSEM modelling. Due to the singular source terms commonly
employed in these models, we proposed a regularisation approach, and provided analysis
of weak convergence estimates. The proposed method provides a consistent way to model
point dipole sources and receivers in settings where both the primal and dual problems are
of interest. It is also convenient for the stochastic formulation as it avoids a source term that
depends on random data, which can cause stability issues.

After reviewing the deterministic CSEM inverse problem, a change of perspective and
methodology was introduced by posing a stochastic problem, using probability to model the
uncertainty in the unknown conductivity material parameter. In this sense, conductivity be-
comes a spatial random field with an infinite number of degrees of freedom. The properties of
such a random field are controlled by the covariance function which was chosen to be in the
Whittle-Matérn class, allowing flexibility and having desirable properties. We proved that
the stochastic problem is well-posed for the models of interest in this thesis and provided its
reformulation in a parametric form via the Karhunen-Loève expansion. This parametric form,
with distributed uncertainty, allows the computation of deterministic solutions correspond-
ing to each realisation of the conductivity random field. It is also proven to be well-posed
under suitable assumptions related to the smoothness of the random field. Thus, a computa-
tional framework is available for forward Uncertainty Quantification, which amounts to the
approximation of infinite-dimensional integrals with respect to the prior measure. If data
becomes available, the prior should be updated to a posterior. Hence, the Bayesian inverse
problem entails the approximation of integrals with respect to the posterior measure which
can be re-expressed using the infinite-dimensional analogue of Bayes’ rule in terms of the
prior measure. Under the same assumptions, the inverse problem is also well-posed and
stable under perturbations of the data and approximation of the forward map.
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After establishing the theoretical properties, the main challenge is computational and it
involves the efficient and scalable approximation of infinite-dimensional integrals such that
the curse of dimensionality is alleviated or overcome. In this work, we have examined the-
oretically and numerically a computational framework based on Sparse Quadrature that en-
ables efficient Uncertainty Quantification. Based on the theory of high-dimensional, sparse
polynomial approximation, SQ predicts dimension-independent convergence rates for the
estimation of the pertinent integrals in the forward UQ case. We gave a proof that these
rates are also achievable in theory in the case examined here and gave numerical evidence
to support the analysis. For inverse UQ, the method is known to be influenced by the noise
level and number of observations; it is therefore more challenging and requires additional
steps.

Although SQ can provide favourable convergence rates, the computational costs involved
might still be high if the underlying Hi-Fi discretised problem is large-scale with a high
number of degrees of freedom 𝑁ℎ. In such cases, we have proposed the extension to the
lognormal case of a model reduction scheme that is based on the weighted Reduced Basis
and Empirical Interpolation methods and which allows to reduce the computational costs for
forward UQ.The combined SQ-EIM-RB computational framework depends on the interaction
between the SQ and EIM-RB methods and on derived goal-oriented, primal-dual based, a
posteriori error estimators. The performance of the algorithm was tested numerically to
show the efficiency of the estimators for most sample values and the convergence of the
quadrature schemewith rates comparable to the plain SQ case, but with lower computational
costs when 𝑁ℎ is sufficiently high. As mentioned, possible application areas of this approach
include CSEM, where the dimension of the discretised problem can be very high and thus
suitable for model reduction methods.

The results and work undergone in this thesis generate many interesting questions and
possible further research directions, in terms of analysis, algorithms and applications. We
summarise here the main open questions.

• In terms of theoretical analysis, there are three main issues that remain open: i) a
convergence analysis of the regularisation approach in weighted Sobolev spaces will
give a better understanding of themethod’s properties, ii) the extension to the Bayesian
inverse problem of the proof given for forward UQ estimation by Sparse Quadrature,
iii) the analysis of the a priori convergence properties of the combined SQ-EIM-RB
method.

• An issue that we haven’t addressed is how the framework can deal effectively with
the case of many sources and receivers. A straightforward approach would be to treat
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each source-sensor pair separately, leading essentially to 𝑛𝑠 different reduced spaces
for the primal problems and 𝑛𝑟 different reduced spaces for the dual problems, for the
estimation of the first moment in each case. It is clear that if 𝑛𝑟 ≫ 𝑛𝑠 , then the primal-
dual approach becomes computationally expensive and one should resort to using a
primal-only method with 𝑛𝑠 reduced spaces. If 𝑛𝑠 ≫ 𝑛𝑟 , then the reciprocity property
of Maxwell equations can be used to “exchange” the roles of sources and receivers,
leading again to a primal-only method with 𝑛𝑟 reduced spaces. Let us mention, that
we have also tested numerically the heuristic approach of using one primal and dual
reduced space for all sources and receivers but the results were not encouraging, so
the case of large 𝑛𝑟 and 𝑛𝑠 is challenging.

• The behaviour of the SQ method for the Bayesian inverse problem requires further
examination to be conclusive. Based on this, an extension of the SG-EIM-RB for inverse
UQ is possible.

• In terms of applications, an experiment involving real CSEM data can provide a bench-
mark for the performance of the Bayesian inverse problem. Additionally, the extension
of the methods to more complex models that include e.g. an air layer will allow a direct
application to real-world scenarios.

• Other generally interesting topics include the representation of the random field in
other bases, the balancing of both spatial and stochastic discretisation errors and the
use of domain decomposition reduced basis approaches.
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Appendix A

FEM for Maxwell Equations (fem4max
package)

A.1 Implementation Details

The finite element method for Maxwell equations was implemented in MATLAB for the low-
est order edge elements on tetrahedral 3𝐷 meshes. The resulting software fem4max is avail-
able using the DOI 10.13140/RG.2.2.18120.42242. The following aspects of the implementa-
tion deserve further explanation.

Edge Orientation

Since the degrees of freedom are associated with edges, the orientation of the edges should be
consistent in neighbouring elements. This is achieved by first sorting the global numbering
of the nodes of each element in ascending order and by defining the orientation of each edge
pointing from the lowest numbered node to the highest numbered node. Then, the definition
of the affine mapping ensures that the orientation of all edges is consistent. For more details,
see for example Monk [123].

Efficient Assembly

The simplest method of assembling the matrices is to use a loop that goes through each el-
ement and assembles the local matrix contribution. This is then added to the global matrix
using a local to global mapping. However, this can become computationally expensive when
the number of elements is high, especially in interpreted languages such as MATLAB. For
this reason, the method described in Hannukainen and Juntunen [91](similar to Rognes et al.
[136]) was used. The loop over elements is replaced by a loop over local degrees of freedom
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and number of dimensions. Also, the numerical integration is decoupled from the geometry
mappings which allows reuse of pre-computable parts. In addition, the code is vectorised,
leaving only an acceptable number of loops. The drawback of this method is the increased
requirement for memory storage but this can be circumvented by splitting the assembly pro-
cess into manageable pieces.

Software Design

The implementationmakes use of object-oriented programming concepts. In particular, there
are six main classes corresponding to abstract parts of the finite element method.

• The mesh class: this includes methods and properties that are related to the mesh. The
input is node and connectivity matrices which are sufficient to describe a tetrahedral
mesh and that can be obtained using mesh generation software such as TetGen [151].
The mesh class pre-computes required information such as the affine mapping and
prepares the data for use by the other classes.

• The quadrature class: this defines the numerical integration scheme by using pre-
defined quadrature points and weights on a reference tetrahedron.

• The PDE class: this defines the parameters of the second-order time-harmonicMaxwell
equations and pre-computes their values.

• The FEM class: this is the main finite element class which includes the assembly of the
matrices, the application of boundary conditions (Dirichlet and Neumann types) and
the solution of the linear system using a direct or iterative method.

• The post-processing class: this contains the methods for the post-processing of the
solution. Supported operations are the interpolation of the solution on chosen points,
the calculation of the magnetic field, the calculation of the errors in the 𝐿2 and 𝐻(curl)
norms and exporting the mesh and solution data for visualisation.

A.2 Verification

The verification of the FEM implementation was done by comparing the numerical re-
sults with analytical solutions for two example problems: a simple source problem and the
Maxwell eigenvalue problem for the cavity resonator.
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Source Problem

We solve Maxwell’s equations in the quasi-magnetostatic approximation in the domain 𝐷 =
[−1, 1]3. The source term is

𝐟 = 1
𝜇
⎛
⎜⎜
⎝

−𝑖𝑥2𝑧 (𝑧2 − 1) (𝜇𝜔𝜎 (𝑦2 − 1) − 2𝑖) + 𝑧 (2 (2𝑦2 + 𝑧2 − 3) + 𝑖𝜇𝜔𝜎 (𝑦2 − 1) (𝑧2 − 1)) − 2𝑥 (3𝑦2 − 1) (𝑧2 − 1)
𝑦 (2 (𝑥2 + 𝑧2 − 2) (2𝑥𝑧 + 𝑦2 − 1) + 𝑖𝜇𝜔𝜎 (𝑥2 − 1) (𝑦2 − 1) (𝑧2 − 1))

−𝑖𝑥 (𝑥2 − 1) 𝑧2 (𝜇𝜔𝜎 (𝑦2 − 1) − 2𝑖) + 𝑥 (2 (𝑥2 + 2𝑦2 − 3) + 𝑖𝜇𝜔𝜎 (𝑥2 − 1) (𝑦2 − 1)) − 2 (𝑥2 − 1) (3𝑦2 − 1) 𝑧

⎞
⎟⎟
⎠

(A.2.1)

with analytic solution

𝐄(𝑥, 𝑦, 𝑧) =
⎛
⎜⎜
⎝

−𝑧 (1 − 𝑥2) (1 − 𝑦2) (1 − 𝑧2)
𝑦 (1 − 𝑥2) (1 − 𝑦2) (1 − 𝑧2)
−𝑥 (1 − 𝑥2) (1 − 𝑦2) (1 − 𝑧2)

⎞
⎟⎟
⎠

(A.2.2)

The boundary conditions are PEC and the parameters used have values 𝜔 = 1, 𝜎 = 1, 𝜇 = 1.
We solve the problem using a regular tetrahedral triangulation that is characterised by the
parameter ℎ, which is chosen to be the maximum radius of the circumscribed circles of the
tetrahedra. The numerical rate of convergence in the 𝐿2 norm is shown in fig. A.1a. The
magnitude of the 𝑥-component of the electric field is shown in figs. A.2a and A.2b for both
the numerical and analytical solutions. The vector field for the real part of 𝐸 is shown in
figs. A.2c and A.2d. Note that the analytical solution is purely real but the numerical solution
has a non-zero imaginary part due to numerical dispersion error.

Eigenvalue Problem

The Maxwell eigenvalue problem for the cavity resonator reads (for more details see Monk
[123]): find 𝐄 ∈ 𝐻0(curl; 𝐷) and 𝜔 ∈ ℝ such that

∫𝐷
(∇ × 𝐄) ⋅ (∇ × 𝝂) 𝑑𝑥 = 𝜔2 ∫𝐷

𝐄 ⋅ 𝝂 𝑑𝑥 ∀𝝂 ∈ 𝐻0(curl, 𝐷) (A.2.3)

assuming a PEC boundary condition. For the cube domain𝐷 = [0, 𝜋]3, the analytical solution
to this problem gives non-zero eigenvalues 𝜔2 = 𝑘2 + 𝑙2 + 𝑛2, with 𝑘, 𝑙, 𝑚 = 0, 1, …, where at
least two of the terms 𝑘, 𝑙, 𝑚 must be non-zero. The eigenfunctions are

𝐄(𝑥, 𝑦, 𝑧) =
⎛
⎜⎜
⎝

𝑎1 cos(𝑘𝑥) sin(𝑙𝑦) sin(𝑚𝑧)
𝑎2 sin(𝑘𝑥) cos(𝑙𝑦) sin(𝑚𝑧)
𝑎3 sin(𝑘𝑥) sin(𝑙𝑦) cos(𝑚𝑧)

⎞
⎟⎟
⎠

(A.2.4)
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(b) Exact and numerical eigenvalues for the
Maxwell eigenvalue problem in a cavity 𝐷 =
[0, 𝜋]3. Themesh consists of 3072 tetrahedra.

Fig. A.1 Numerical verification of FEM implementation for the source and eigenvalue prob-
lem.

The multiplicity of the eigenvalues is determined by the vector 𝑎 = (𝑎1, 𝑎2, 𝑎3) such that
(𝑎1, 𝑎2, 𝑎3) ⋅ (𝑘, 𝑙, 𝑚) = 0. The comparison of the analytical with the numerical eigenvalues
is shown in fig. A.1b. The numerical solution gives a good approximation and the correct
multiplicity.
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(a) Numerical (b) Exact

(c) Numerical
(d) Exact

Fig. A.2 Numerical verification of FEM implementation for the source problem. Top: numer-
ical and exact solutions for |𝐸𝑥 | in 𝑥 = 0 plane. Bottom: numerical and exact glyphs for ℜ(𝐄)
in 𝑦 = 0 plane.

Fig. A.3 Example electric field streamlines generated by the solution of a CSEM two-layer
model with a conductivity anomaly and a dipole source.
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